Journal of Materials Science

, Volume 43, Issue 3, pp 1070–1079 | Cite as

Gamma ray interaction with copper-doped sodium phosphate glasses

  • Fatma Hatem El-BatalEmail author


Copper-doped sodium phosphate glasses of various compositions and with varying copper contents were prepared. UV-visible and infrared spectroscopic studies were measured before and after successive gamma irradiation. Experimental results indicate that copper ions occupy different local sites depending on the host glass composition and concentration of copper ions. The changes in UV, visible and infrared spectral data, are discussed in relation to the structural evolution caused by the change in composition and states of copper ions. Copper ions have been found to show a shielding behavior toward the effects of progressive gamma irradiation causing a retardation of the growth of the induced defects caused by irradiation.


Cu2O Gamma Irradiation Phosphate Glass Infrared Absorption Spectrum Metaphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hirashima H, Watamate Y, Yohida T (1987) J Non-Cryst Solids 95/96:825CrossRefGoogle Scholar
  2. 2.
    Sakuri Y, Yamaki J (1985) J Electrochem Soc 112:512CrossRefGoogle Scholar
  3. 3.
    Nakamura S, Ichinose N (1987) J Non-Cryst Solids 95/96:844CrossRefGoogle Scholar
  4. 4.
    Prasad S, Prasad G, Nath P (1978) Cent Glass Ceram Res Inst Bull 25(2):38Google Scholar
  5. 5.
    Cable M, Xiang ZD (1989) Phys Chem Glasses 30(6):237Google Scholar
  6. 6.
    Morsi MM, Metwalli ES, Mohamed AA (1999) Phys Chem Glasses 40(6):314Google Scholar
  7. 7.
    Bates T (1962) In: Mackenzie JD (ed) Modern aspects of the vitreous state, vol 2, Butterworths, London, p 195Google Scholar
  8. 8.
    Bamford CR (a) (1962) Phys Chem Glasses 3(6):189; (b) (1977) Colour generation and control in glass. Elsevier Science publishers, AmsterdamGoogle Scholar
  9. 9.
    Wong J, Angell CA (1976) Glass structure by spectroscopy. Marcel Dekker, New YorkGoogle Scholar
  10. 10.
    Paul A (1990) Chemistry of glasses, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  11. 11.
    Sreekanth Chakradhar RP, Murali A, Lakshmara Rao J (1998) J Alloys Compnd 281:99CrossRefGoogle Scholar
  12. 12.
    El-Batal FH, AboNaf SM, Ezz El-Din FM (2005) Indian J Pure Appl Phys 43(8):579Google Scholar
  13. 13.
    Marzouk SY, El-Batal FH (2006) Nucl Instr Meth Phys Res B248:90CrossRefGoogle Scholar
  14. 14.
    Sigel GH, Ginther RJ (1968) Glass Technol 9(3):66Google Scholar
  15. 15.
    Cook L, Mader KH (1982) J Am Ceram Soc 65:109CrossRefGoogle Scholar
  16. 16.
    Duffy JA (1997) Phys Chem Glasses 38:289Google Scholar
  17. 17.
    Ehrt D (2000) Glass Technol 41(6):181Google Scholar
  18. 18.
    Ehrt D, Natura U, Ebeling P (2000) J Non-Cryst Solids 263 & 264:240CrossRefGoogle Scholar
  19. 19.
    Moncke D, Ehrt D (2004) Opt Mater 25:425CrossRefGoogle Scholar
  20. 20.
    Bishay A, Kinawi A (1965) Proc. Phys. Non-Crystall. Solids. John Wiley & Sons, New York, p 580Google Scholar
  21. 21.
    Kurkjian ER, Sigety EA (1968) Phys Chem Glasses 9:73Google Scholar
  22. 22.
    Lell L, Kreidl NJ, Hensler JR (1966) In: Burke JD (ed) Progress in ceramic science, vol 4. Pergamon Press, Oxford, pp 1Google Scholar
  23. 23.
    Bishay A (1970) J Non-Cryst Solids 3:54CrossRefGoogle Scholar
  24. 24.
    Friebele EJ (1991) In: Uhlmann DR, Kreidl NJ (eds) Optical properties of glass. American Ceramic Society, Westerville, p 205Google Scholar
  25. 25.
    Schreurs JWH, Tucker F (1964) In: Prins A (ed) Proc. Phys. Non-Cryst. Solids. North-Holland, p 61Google Scholar
  26. 26.
    Beekenkamp P (1965) Thesis, Technical University, Eindhoven; (1966) Phillips Res Suppl. 4:1Google Scholar
  27. 27.
    Griscom DL, Friebele EJ, Long RJ, Fleming JW (1983) J Appl Phys 54:3743CrossRefGoogle Scholar
  28. 28.
    El-Batal FH, Marzouk SY, Azooz MA (2006) Phys Chem Glasses: Eur J glass Sci Technol B 47(50):588Google Scholar
  29. 29.
    Marzouk SY, El Batal FH, Salem AM, AboNaf SM (2007) Physica (B) 29:1456Google Scholar
  30. 30.
    Jorgensen CK (1957) Acta Chem Scand 11:73CrossRefGoogle Scholar
  31. 31.
    Duran A, Fernandez Navarro JM (1985) Phys Chem Glasses 26(4):126Google Scholar
  32. 32.
    Edwards RJ, Paul A, Douglas RW (1972) Phys Chem Glasses 13(5):131Google Scholar
  33. 33.
    Ravikumar RVSSN, Chandrasekhar AV, Ramoorthy J, Reddy RJ, Yamauchi J, Rao PS (2004) J Alloys Compnd 364:176CrossRefGoogle Scholar
  34. 34.
    Cozar O, Aderlean I (1987) J Non-Cryst Solids 92:278CrossRefGoogle Scholar
  35. 35.
    Thulasiramudu A, Buddhudu S (2006) J Quant Spectr Rad Transfer 97:181CrossRefGoogle Scholar
  36. 36.
    Paul A (1970) Phys Chem Glasses 11(5):159Google Scholar
  37. 37.
    Tomlinson AAG, Hathaway BT, Billing DE, Nicols P (1969) J Chem Soc 65Google Scholar
  38. 38.
    Denath R, Chaudbury J, Chandra Bera S (1990) Phys Stat Solid (B) 157:723CrossRefGoogle Scholar
  39. 39.
    Ehrt D, Brettschneider A (1995) Proc Int Glass Cong, Beijing, China, vol 3. pp 157–162Google Scholar
  40. 40.
    Albert Cotton F, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Johnwiley-Interscience, New York, p 867Google Scholar
  41. 41.
    Morsi MM, Nassar AM (1978) J Non-Cryst Solids 27:81CrossRefGoogle Scholar
  42. 42.
    Bogomolova LD, Federov AG, Jackhin VA, Lazukin VN (1980) J Non-Cryst Solids 37:81, ibid. (1980) 38–39, 159Google Scholar
  43. 43.
    Ahmed AA, Abbas AF, Ezz El-Din FM (1984) Phys Chem Glasses 25(1):22Google Scholar
  44. 44.
    Ohishi Y, Mitachi S, Kanamori T, Menabe T (1983) Phys Chem Glasses 24:135Google Scholar
  45. 45.
    Zahariasen WH (1932) J Am Chem Soc 54:3841CrossRefGoogle Scholar
  46. 46.
    Van Wazer JR (1950) J Am Chem Soc 72:644CrossRefGoogle Scholar
  47. 47.
    Martin SW (1991) Eur J Solid State Inorg Chem 1:163Google Scholar
  48. 48.
    Brow RK, Click CA, Alam TM (2000) J Non-Cryst Solids 274:9CrossRefGoogle Scholar
  49. 49.
    Van Wazer JR (1951) The phosphorous and its compounds, vols 1 and 2. Interscience, New YorkGoogle Scholar
  50. 50.
    Kordes E, Vogel W, Eterowsky RF (1953) Z Electrochem 57:282Google Scholar
  51. 51.
    Bunker BC, Arnold GW, Wilder JA (1984) J Non-Cryst Solids 64:291CrossRefGoogle Scholar
  52. 52.
    Peng YB, Day DE (1984) Glass Technol 5:166Google Scholar
  53. 53.
    Stranford GT, Condrate RA Sr, Conpilsen BC (1981) J Mol Struct 73:231CrossRefGoogle Scholar
  54. 54.
    Nelson BN, Exharhos GJ (1979) J Chem Phys 71:2379CrossRefGoogle Scholar
  55. 55.
    Efimov AM (1997) J Non-Cryst-Solids 209:209CrossRefGoogle Scholar
  56. 56.
    Znacik P, Jamnick M (1992) J Non-Cryst Solids 146:74CrossRefGoogle Scholar
  57. 57.
    Abdel-Kader A, Higazy AA, El-Kholy MM (1991) J Mater Sci Mater Electr 5:15Google Scholar
  58. 58.
    Exarhos GJ (1986) In: Walrafen GE, Revez AG (eds) Structure and bonding in non-crystalline solids. Plenum, New York, p 203Google Scholar
  59. 59.
    Scagliotti M, Villa M, Chiodelli G (1987) J Non-Cryst Solids 43:350CrossRefGoogle Scholar
  60. 60.
    Shastry MCR, Rao K (1990) J Spectrochim Acta A 46:1581CrossRefGoogle Scholar
  61. 61.
    Moustafa YM, El-Egili K (1998) J Non-Cryst Solids 240:144CrossRefGoogle Scholar
  62. 62.
    Chowdari BVR, Tan KI, Chia WT, Gopalakrishnam R (1990) J Non-Cryst solids 119:95CrossRefGoogle Scholar
  63. 63.
    Montagne L, Palrit G, Mairesse G (1996) Phys Chem Glasses 37:206Google Scholar
  64. 64.
    Chahine A, El-Tabirou M, El-Benaissi M, Hadded M, Pascal JL (2004) Mater Chem Phys 84:341CrossRefGoogle Scholar
  65. 65.
    Dunken H, Doremus RH (1987) J Non-Cryst Solids 92:61CrossRefGoogle Scholar
  66. 66.
    Husung RD, Doremus RH (1990) J Mater Res 25:2209CrossRefGoogle Scholar
  67. 67.
    Shih PY, Yung SW, Chin TS (1998) J Non-Cryst Solids 224:143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Glass Research DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations