Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1270–1277 | Cite as

Surface grain boundary engineering of shot-peened type 304 stainless steel

  • Osama M. AlyousifEmail author
  • Dirk L. Engelberg
  • Thomas J. Marrow
Article

Abstract

The effect of thermal annealing on shot-peened Type 304 stainless steel has been examined using electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The objective was to evaluate the potential for surface property control by grain boundary engineering. The near surface microstructure of shot-peened material showed a gradual change of the grain boundary character distribution with depth. Twin (Σ3) and higher order twin grain boundaries (Σ9, Σ27) identified closer to the shot-peened surface had significant deviations from their optimum misorientation. The subsequent application of annealing treatments caused depth-dependent changes of the near surface microstructure, with variations in grain size, low Σ CSL grain boundary populations and their deviation from optimum misorientation. Microstructure developments were dependent on the applied heat treatment, with the near surface microstructures showing similarities to microstructures obtained through bulk thermo-mechanical processing. Shot peening, followed by annealing, may therefore be used to control the near surface microstructure of components.

Keywords

Austenitic Stainless Steel Shot Peening Coincidence Site Lattice Coincidence Site Lattice Boundary Grain Boundary Engineering 

Notes

Acknowledgements

The authors are grateful for the support of Rolls-Royce (Marine) Ltd. The authors are grateful to Metal Improvement Company for conducting the peening of the 304 stainless steel. The authors are also grateful for the technical assistance from Judith Shackleton with the X-ray diffraction measurements and Lai Mei Li with the plastic strain measurements.

References

  1. 1.
    Grimmer H, Bollmann W, Warrington DH (1974) Acta Crystallogr A30:197CrossRefGoogle Scholar
  2. 2.
    Gertsman VY, Bruemmer SM (2001) Acta Mater 49:1589CrossRefGoogle Scholar
  3. 3.
    Bi HY, Kokawa H, Jie Wang Z, Shimada M, Sato YS (2003) Scripta Mater 49(3):219CrossRefGoogle Scholar
  4. 4.
    Palumbo G, Aust KT (1990) Acta Metall Mater 38(11):23343CrossRefGoogle Scholar
  5. 5.
    Randle V (2006) Scripta Mater 54:1011CrossRefGoogle Scholar
  6. 6.
    Rohrer GS, Randle V, Kim C-S, Hu Y (2006) Acta Mater 54:4480CrossRefGoogle Scholar
  7. 7.
    Watanabe T (1984) Res Mech 11:47Google Scholar
  8. 8.
    Palumbo G (1997) Patent 5,702,543—Thermomechanical Processing of Metallic Materials. United StatesGoogle Scholar
  9. 9.
    Palumbo G (1998) Patent 5,817,193—Metals Having Improved Resistance to Intergranular Stress Corrosion Cracking. United StatesGoogle Scholar
  10. 10.
    Randle V (1999) Acta Mater 47(15–16):4187CrossRefGoogle Scholar
  11. 11.
    Lin P, Palumbo G, Erb U, Aust KT (1995) Scripta Metall Mater 33(9):1387CrossRefGoogle Scholar
  12. 12.
    Lehockey EM, Palumbo G, Lin P (1998) Metall Mater Trans 29A:3069CrossRefGoogle Scholar
  13. 13.
    Kumar M, King WE, Schwartz AJ (2000) Acta Mater 48:2081CrossRefGoogle Scholar
  14. 14.
    Schuh CA, Kumar M, King WE (2003) Acta Mater 51:687CrossRefGoogle Scholar
  15. 15.
    Thaveeprungsriporn V, Sinsrok P, Thong-Aram D (2001) Scripta Mater 44:67CrossRefGoogle Scholar
  16. 16.
    King WE, Schwartz AJ (1998) Scripta Mater 38(3):449CrossRefGoogle Scholar
  17. 17.
    Shimada M, Kokawa H, Wang ZJ, Sato YS, Karibe I (2002) Acta Mater 50(9):2331CrossRefGoogle Scholar
  18. 18.
    Engelberg DL, Humphreys FJ, Marrow TJ (2007) J Microsc In PressGoogle Scholar
  19. 19.
    Tan L, Allen TR (2005) Metall Mater Trans 36A(7):1921CrossRefGoogle Scholar
  20. 20.
    Jivkov AP, Stevens NPC, Marrow TJ (2006) Acta Mater 54:3493CrossRefGoogle Scholar
  21. 21.
    Jivkov AP, Marrow TJ (2007) Theor Appl Fract Mech 48(3):187CrossRefGoogle Scholar
  22. 22.
    Jivkov AP, Stevens NPC, Marrow TJ (2007) J Pressure Vessel Technol T ASME In PressGoogle Scholar
  23. 23.
    Jivkov AP, Stevens NPC, Marrow TJ (2006) Comp Mater Sci 38:442CrossRefGoogle Scholar
  24. 24.
    Winning M (2006) Scripta Mater 54:987CrossRefGoogle Scholar
  25. 25.
    Molodov DA, Konijnenberg PJ (2006) Scripta Mater 54:977CrossRefGoogle Scholar
  26. 26.
    Watanabe T, Tsurekawa S, Zhao X, Zuo L (2006) Scripta Mater 54:969CrossRefGoogle Scholar
  27. 27.
    Furukawa M, Horita Z, Langdon TG (2005) J Mater Sci 40:909CrossRefGoogle Scholar
  28. 28.
    Wang XY, Li DY (2002) Electrochim Acta 47:3939CrossRefGoogle Scholar
  29. 29.
    Liu G, Lu J, Lu K (2000) Mater Sci Eng A286:91CrossRefGoogle Scholar
  30. 30.
    Wang T, Yu j, Dong B (2006) Surf Coat Technol 200:4777CrossRefGoogle Scholar
  31. 31.
    Limoges DL, Palumbo G, Lin PK (2002) Patent 6,344,097 B1—Surface Treatment of Austenitic Ni-Fe-Cr-Based Alloys for Improved Resistance to Intergranular Corrosion and Cracking. United StatesGoogle Scholar
  32. 32.
    Lindsay JH (2004) Plat Surf Finish 91(7):1Google Scholar
  33. 33.
    Humphreys FJ (2001) Vmap—orientation mapping and quantitative metallography by EBSD. Manchester Materials Science Centre, The University of Manchester, ManchesterGoogle Scholar
  34. 34.
    Brandon DG (1966) Acta Metall 14:1479CrossRefGoogle Scholar
  35. 35.
    Altenberger I, Scholtes B, Martin U, Oettel H (1999) Mater Sci Eng A264:1CrossRefGoogle Scholar
  36. 36.
    Renzhi W, Xaingbin L, Yuanfa Y (1985) In: Niku-Lari A (ed) Advances in surface treatments: technology, applications, effects, vol 2. Pergamon Press, pp 161–170 (ISBN 0080325351)Google Scholar
  37. 37.
    Kumar M, Schwartz AJ, King WE (2001) Mater Sci Eng A309–310:78CrossRefGoogle Scholar
  38. 38.
    Thomson CB, Randle V (1997) Acta Mater 45(12):4909CrossRefGoogle Scholar
  39. 39.
    Iino Y (1992) J Mater Sci Lett 11:1253CrossRefGoogle Scholar
  40. 40.
    Iino Y, Kim TY, Mun SD (1996) Wear 199:211CrossRefGoogle Scholar
  41. 41.
    Randle V, Jones R, Marrow J, Engelberg D (2008) Effect of Strain Path and Annealing on Development of Resistance to Intergranular Degradation in Austenitic Stainless Steel. ICOTOM 15. Pittsburgh: TMSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Osama M. Alyousif
    • 1
    Email author
  • Dirk L. Engelberg
    • 2
  • Thomas J. Marrow
    • 2
  1. 1.Department of Mechanical Engineering, College of Engineering & PetroleumKuwait UniversitySafatKuwait
  2. 2.Materials Performance Centre, School of MaterialsThe University of ManchesterManchesterUK

Personalised recommendations