Journal of Materials Science

, Volume 43, Issue 5, pp 1723–1729 | Cite as

Modifier ligands effects on the synthesized TiO2 nanocrystals

  • Abbas Sadeghzadeh Attar
  • Morteza Sasani GhamsariEmail author
  • Fereshteh Hajiesmaeilbaigi
  • Shamsoddin Mirdamadi


In this study, the preparation of titanium dioxide nanocrystals by sol–gel method has been considered. Then, the effect of modifier ligands such as acetylacetone (AcAc) and acetic acid (AcOH) on synthesis of TiO2 nanocrystalline powders has been investigated. The experimental results showed that the reaction of tetraisopropoxide titanium, Ti(OPri)4, with acetylacetone and acetic acid leads to formation of complexes that can prevent the precipitation of undesired phases from highly reactive precursors. Whereas, the band of ligands to TiO2 nanocrystals is not broken easily at temperatures lower than about 400 °C. So these ligands may remain in the final TiO2 nanostructures and affect the morphology and structure of prepared materials. The studied samples were characterized using Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric and Differential thermal analysis (TG-DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM).


TiO2 AcAc TiO2 Nanoparticles Acetylacetone AcOH 


  1. 1.
    Boujday S, Wunsch F, Portes P, Bocquet J-F, Colbeau-Justin C (2004) Sol Energ Mat Sol C 83:421CrossRefGoogle Scholar
  2. 2.
    Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C (2004) Appl Catal B Environ 54:51CrossRefGoogle Scholar
  3. 3.
    Monticone S, Tufeu R, Kanaev AV, Scolan E, Sanchez C (2000) Appl Surf Sci 162–163:565CrossRefGoogle Scholar
  4. 4.
    Tjong SC, Chen H (2004) Mater Sci Eng R 45:1CrossRefGoogle Scholar
  5. 5.
    Jiu J, Isoda S, Wang F, Adachi M (2006) J Phys Chem B 110:2087CrossRefGoogle Scholar
  6. 6.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Ch 32:33CrossRefGoogle Scholar
  7. 7.
    Yu J, Wang G, Cheng B, Zhou M (2007) Appl Catal B Environ 69:171CrossRefGoogle Scholar
  8. 8.
    Yu J, Su Y, Cheng B, Zhou M (2006) J Mol Catal A Chem 258:104CrossRefGoogle Scholar
  9. 9.
    Kim B-H, Lee J-Y, Choa Y-H, Higuchi M, Mizutani N (2004) Mater Sci Eng B 107:289CrossRefGoogle Scholar
  10. 10.
    Backman U, Auvinen A, Jokiniemi JK (2005) Surf Coat Technol 192:81CrossRefGoogle Scholar
  11. 11.
    Wang K-H, Hsieh Y-H, Chao P-W, Cgang C-Y (2002) J Hazard Mater 95:161CrossRefGoogle Scholar
  12. 12.
    Bessergenev VG, Khmelinskii IV, Pereira RJF, Krisuk VV, Turgambaeva AE, Igumenov IK (2002) Vacuum 64:275CrossRefGoogle Scholar
  13. 13.
    Li W, Shah SI, Huang C-P, Jung O, Ni C (2002) Mater Sci Eng B 96:247CrossRefGoogle Scholar
  14. 14.
    Bardos L, Barankova H (2001) Surf Coat Technol 146–147:463CrossRefGoogle Scholar
  15. 15.
    Jokanovic V, Spasic AM, Uskokovic D (2004) J Colloid Interface Sci 278:342CrossRefGoogle Scholar
  16. 16.
    Okuya M, Shiozaki K, Horikawa N, Kosugi T, Kumara GRA, Madarasz J, Kaneko S, Pokol G (2004) Solid State Ionics 172:527CrossRefGoogle Scholar
  17. 17.
    Djaoued Y, Bruning R, Bersani D, Lottici PP, Badilescu S (2004) Mater Lett 58:2618CrossRefGoogle Scholar
  18. 18.
    Trung T, Cho W-J, Ha C-S (2003) Mater Lett 57:2746CrossRefGoogle Scholar
  19. 19.
    Sugimoto T, Zhou X, Muramatsu A (2003) J Colloid Interface Sci 259:53CrossRefGoogle Scholar
  20. 20.
    Sugimoto T, Zhou X, Muramatsu A (2002) J Colloid Interface Sci 252:339CrossRefGoogle Scholar
  21. 21.
    Sugimoto T, Zhou X, Muramatsu A (2002) J Colloid Interface Sci 252:347CrossRefGoogle Scholar
  22. 22.
    Arnal P, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1997) Chem Mater 9:694CrossRefGoogle Scholar
  23. 23.
    Yu J, Yu JC, Hob W, Leung MKP, Cheng B, Zhang G, Zhao X (2003) Appl Catals A Gen 255:309CrossRefGoogle Scholar
  24. 24.
    Kim C-S, Moon BK, Park J-H, Chung ST, Son S-M (2003) J Cryst Growth 254:405CrossRefGoogle Scholar
  25. 25.
    Kim C-S, Moon BK, Park J-H, Choi B-C, Seo H-J (2003) J Cryst Growth 257:309CrossRefGoogle Scholar
  26. 26.
    Xie Y, Yuan C (2004) Mater Res Bull 39:533CrossRefGoogle Scholar
  27. 27.
    Palmisano L, Augugliaro V, Sclafani A, Schiavello M (1988) J Phys Chem 92:6710CrossRefGoogle Scholar
  28. 28.
    Nian J-N, Teng H (2006) J Phys Chem B 110:4193CrossRefGoogle Scholar
  29. 29.
    Ruiz AM, Sakai G, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2004) Sens Actuators B Chem 103:312CrossRefGoogle Scholar
  30. 30.
    Kim DH, Hong HS, Kim SJ, Song JS, Lee KS (2004) J Alloy Compd 375:259CrossRefGoogle Scholar
  31. 31.
    Xiaoyan P, Xueming M (2004) Mater Lett 58:513CrossRefGoogle Scholar
  32. 32.
    Guimaraes JL, Abbate M, Betim SB, Alves MCM (2003) J Alloy Compd 352:16CrossRefGoogle Scholar
  33. 33.
    Kamei M, Mitsuhashi T (2000) Surf Sci 463:L609CrossRefGoogle Scholar
  34. 34.
    Tsai M-H, Chen S-Y, Shen P (2005) Aerosol Sci 36:13CrossRefGoogle Scholar
  35. 35.
    Oh S-M, Ishigaki T (2004) Thin Solid Films 457:186CrossRefGoogle Scholar
  36. 36.
    Limmer SJ, Chou TP, Cao GZ (2004) J Mater Sci 39:895, doi: CrossRefGoogle Scholar
  37. 37.
    Miao L, Tanemura S, Toh S, Kaneko K, Tanemura M (2004) J Cryst Growth 264:246CrossRefGoogle Scholar
  38. 38.
    Steunou N, Ribot F, Boubekeur K, Maquet J, Sanchez C (1999) New J Chem 23:1079CrossRefGoogle Scholar
  39. 39.
    Livage J, Henry M, Sanchez C (1988) Prog Solid State Ch 18:259CrossRefGoogle Scholar
  40. 40.
    Scolan E, Sanchez C (1998) Chem Mater 10:3217CrossRefGoogle Scholar
  41. 41.
    Doeuff S, Henry M, Sanchez C, Livage J (1987) J Non-Cryst Solids 89:206CrossRefGoogle Scholar
  42. 42.
    Doeuff S, Henry M, Sanchez C (1990) Mat Res Bull 25:1519CrossRefGoogle Scholar
  43. 43.
    Wu M, Lin G, Chen D, Wang G, He D, Feng S, Xu R (2002) Chem Mater 14:1974CrossRefGoogle Scholar
  44. 44.
    Livage J, Henry M, Jolivet JP, Sanchez C (1990) MRS Bull XV:17Google Scholar
  45. 45.
    Ribot F, Toledano P, Sanchez C (1991) Chem Mater 3:759CrossRefGoogle Scholar
  46. 46.
    Chatry M, Henry M, Livage J (1994) Mater Res Bull 29:517CrossRefGoogle Scholar
  47. 47.
    Percy MJ, Bartlett JR, Woolfrey JL, Spiccia L, Westa BO (1999) J Mater Chem 9:499CrossRefGoogle Scholar
  48. 48.
    Chatry M, Henry M, In M, Sanchez C, Livage J (1994) J Sol-gel Sci Techn 1:233CrossRefGoogle Scholar
  49. 49.
    Sanchez C, Livage J, Henry M, Babonneau F (1988) J Non-Cryst Solids 100:65CrossRefGoogle Scholar
  50. 50.
    Leaustic A, Babonneau F, Livage J (1989) Chem Mater 1:240CrossRefGoogle Scholar
  51. 51.
    Leaustic A, Babonneau F, Livage J (1989) Chem Mater 1:248CrossRefGoogle Scholar
  52. 52.
    Birnie DP (2000) J Mater Sci 35:367, doi:10.1023A:1004770007284CrossRefGoogle Scholar
  53. 53.
    Birnie DP, Bendzko NJ (1999) Mater Chem Phys 59:26CrossRefGoogle Scholar
  54. 54.
    Limmer SJ, Chou TP, Cao GZ (2005) J Sol-gel Sci Techn 36:183CrossRefGoogle Scholar
  55. 55.
    Cullity BD (1978) Elements of X-ray Diffraction. Addison Wesley pub., Menlo ParkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Abbas Sadeghzadeh Attar
    • 1
  • Morteza Sasani Ghamsari
    • 2
    Email author
  • Fereshteh Hajiesmaeilbaigi
    • 3
  • Shamsoddin Mirdamadi
    • 1
  1. 1.Department of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Solid State Lasers Research Group, Laser and Optics Research SchoolNSTRITehranIran
  3. 3.Solid State Lasers Research GroupLaser Research CenterTehranIran

Personalised recommendations