Journal of Materials Science

, Volume 43, Issue 11, pp 3982–3988 | Cite as

Study of InN/GaN interfaces using molecular dynamics

  • J. Kioseoglou
  • E. Kalessaki
  • G. P. Dimitrakopulos
  • Ph. Komninou
  • Th. KarakostasEmail author
Intergranular and Interphase Boundaries in Materials


Epitaxial growth of thin films is, in general, based on specific interfacial structures defined by a minimum of interfacial energy and usually influenced by the structural mismatch. In the present study, the structures and energies of (0001) InN/GaN epitaxial interfaces are studied using the Tersoff interatomic potential. The potential describes the metallic and intermetallic interactions sufficiently well and is assembled in order to accurately reproduce the lattice and elastic parameters of wurtzite Ga(In)-Nitrides. Different configurations are examined for each interface depending on polarity and atomic stacking. It is shown that the interfacial structures of InN thin films grown with indium polarity interfaces exhibit lower self-energies than those of N-polarity. Although the substrate and the epilayer were assumed to exhibit the wurtzite crystal structure, both wurtzite and zinc-blende type atomic stackings are possible at the interfacial region since they were found energetically degenerate within the accuracy of our model. Finally, the spatial location of the epitaxial interface is also energetically defined. Epitaxial interfaces in this system can in principle be imagined to pass through so-called single or double atomic bonds, but the former case was energetically more favourable.


High Resolution Transmission Electron Microscopy Wurtzite High Resolution Transmission Electron Microscopy Misfit Dislocation Nitridation Temperature 



This work was supported by the EC under the contract MRTN-CT-2004-005583 (PARSEM).


  1. 1.
    Pankove JI, Moustakas TD (1998) In: Semiconductors and semimetals. Academic Press, New YorkGoogle Scholar
  2. 2.
    Morkoç H (2007) In: Nitride semiconductors and devices. Springer Series in Materials ScienceGoogle Scholar
  3. 3.
    Von Pezold J, Bristowe PD (2005) J Mater Sci 40:3051CrossRefGoogle Scholar
  4. 4.
    Bernardini F, Fiorentini V (1998) Phys Rev B 57:R9427CrossRefGoogle Scholar
  5. 5.
    Liu PL, Chizmeshy AVG, Kouvelakis J, Tsong IST (2005) Phys Rev B 72:245335CrossRefGoogle Scholar
  6. 6.
    Mitate T, Mizuko S, Takahata H, Kakegawa R (2005) Appl Phys Lett 86:134103CrossRefGoogle Scholar
  7. 7.
    Wang X, Yoshikawa A (2004) Prog Cryst Growth 48/49:42CrossRefGoogle Scholar
  8. 8.
    Dimakis E, Tsagaraki K, Iliopoulos E, Komninou Ph, Delimitis A, Georgakilas A (2005) J Cryst Growth 278:367CrossRefGoogle Scholar
  9. 9.
    Georgakilas A, Mikroulis S, Cimalla V, Zervos M, Kostopoulos A, Komninou Ph, Kehagias Th, Karakostas Th (2001) Phys Status Solidi (a) 188:567CrossRefGoogle Scholar
  10. 10.
    Mikroulis S, Georgakilas A, Kostopoulos A, Cimalla V, Dimakis E, Komninou Ph (2002) Appl Phys Lett 80:2886CrossRefGoogle Scholar
  11. 11.
    Nari H, Matsuka F, Araki T, Suzuki A, Manishi Y (2004) J Cryst Growth 269:155CrossRefGoogle Scholar
  12. 12.
    Kioseoglou J, Komninou Ph, Karakostas Th (unpublished work)Google Scholar
  13. 13.
    Tersoff J (1989) Phys Rev B 39:5566CrossRefGoogle Scholar
  14. 14.
    Tersoff J (1990) Phys Rev B 41:3248CrossRefGoogle Scholar
  15. 15.
    Albe K, Nordlund K, Nord J, Kuronen A (2002) Phys Rev B 66:035205CrossRefGoogle Scholar
  16. 16.
    Nord J, Albe K, Erhart P, Nordlund K (2003) J Phys: Condens Mat 15:5649Google Scholar
  17. 17.
    Benkabou F, Certier M, Aourag H (2003) Mol Simulat 29:201CrossRefGoogle Scholar
  18. 18.
    Nordlund K, Nord J, Frantz J, Keinonen J (2000) Comp Mater Sci 18:283CrossRefGoogle Scholar
  19. 19.
    Kioseoglou J, Dimitrakopulos GP, Komninou Ph, Polatoglou HM, Serra A, Bere A, Nouet G, Karakostas Th (2004) Phys Rev B 70:115331CrossRefGoogle Scholar
  20. 20.
    Nordlund K (2007) In: Introduction to atomistic simulations 2006 Lecture notes, on 3 July 2007
  21. 21.
    Beeler JR, Kulcinski GL (1972) Agenda discussion: computer techniques in interatomic potentials and simulation of lattice defects. Plenum, New York, p 735CrossRefGoogle Scholar
  22. 22.
    Qian GX, Martin R, Chadi D (1988) Phys Rev B 38:7649CrossRefGoogle Scholar
  23. 23.
    Bourret A, Adelmann C, Daudin B, Rouviere J-L, Feuillet G, Mula G (2001) Phys Rev B 63:245307CrossRefGoogle Scholar
  24. 24.
    Delimitis A, Komninou Ph, Dimitrakopulos GP, Kehagias Th, Kioseoglou J, Karakostas Th, Nouet G (2007) Appl Phys Lett 90:061920CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Kioseoglou
    • 1
  • E. Kalessaki
    • 1
  • G. P. Dimitrakopulos
    • 1
  • Ph. Komninou
    • 1
  • Th. Karakostas
    • 1
    Email author
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations