Journal of Materials Science

, Volume 43, Issue 12, pp 4009–4015 | Cite as

Effect of anorthite and diopside on dielectric properties of Al2O3/glass composite based on high strength of LTCC substrate

  • Jinho Kim
  • Seongjin Hwang
  • Wookyung Sung
  • Hyungsun KimEmail author
Rees Rawlings Festschrift


The green sheet of an alumina filler/glass matrix, which is a glass–ceramic based on an anorthite and diopside composite, is a low-fired substrate material for microelectronic packaging. In this study, alumina/glass sheets were prepared using a tape-casting process. The mechanical and dielectric properties of the sintered bodies were examined as a function of the sintering temperature. The volume of the crystalline phases was considered with the peak area of the XRD intensity for evaluating the alumina/glass composite. The flexural strength and dielectric properties of the sintered alumina/glass composites were 167.2 ± 13.1 MPa for the four-point bending test, 5.51 for the dielectric constant and 2,078 MHz for the quality factor, respectively. The dielectric constant was dependent on the volume of crystalline phases present.


Dielectric Constant Dielectric Property Crystalline Phasis Flexural Strength Diopside 



This work was supported by the IT R&D program of MIC/IITA [2006-s055-02, Ceramic Material and Process for High Integrated Module], the Ministry of Education and Human Resources Development (MOE), the Ministry of Commerce, Industry and Energy (MOCIE) and the Ministry of Labor (MOLAB) through the fostering project of the Lab of Excellency.


  1. 1.
    Tummala RR (1991) J Am Ceram Soc 74:895CrossRefGoogle Scholar
  2. 2.
    Sprague JL (1990) IEEE Trans Comp Hybrids Manuf Technol 13:390CrossRefGoogle Scholar
  3. 3.
    Hwang S, Kim H (2007) Thermochim Acta 455:119CrossRefGoogle Scholar
  4. 4.
    Hwang SJ, Kim YJ, Kim HS (2007) J Electroceram 18:121CrossRefGoogle Scholar
  5. 5.
    Lo CL, Duh JG (2003) J Mater Sci 38:693. doi: CrossRefGoogle Scholar
  6. 6.
    Lo CL, Duh JG (2002) J Am Ceram Soc 85:2230CrossRefGoogle Scholar
  7. 7.
    Shimada Y, Yamashita Y, Takamizawa H (1988) IEEE Trans Comp Hybrids Manuf Technol 11:163CrossRefGoogle Scholar
  8. 8.
    Marques VMF, Tulyaganov DU, Agathopoulos S, Gataullin VK, Kothiyal GP, Ferreira JMF (2006) J Eur Ceram Soc 26:2503CrossRefGoogle Scholar
  9. 9.
    Zhang Q, Luo X, Li W, Zhuang H, Yan D (2003) J Mater Sci 38:1781. doi: CrossRefGoogle Scholar
  10. 10.
    Hayashi K, Nishoka Y, Okamto Y (1990) J Ceram Soc Jpn 95:801CrossRefGoogle Scholar
  11. 11.
    Karamanov A, Arrizza L, Matekovits I, Pelino M (2004) Ceram Int 30:2129CrossRefGoogle Scholar
  12. 12.
    Chen GH, Liu XY (2007) J Mater Process Technol 190:77CrossRefGoogle Scholar
  13. 13.
    Kim J, Hwang S, Kim H (in press) J Electroceram. doi: CrossRefGoogle Scholar
  14. 14.
    Kim HS, Rawlings RD, Rogers PS (1989) Br Ceram Proc 42:59Google Scholar
  15. 15.
    Kingery WD, Bowen HK, Uhlman DR (1976) Introduction to ceramics. Wiley, New York, p 793Google Scholar
  16. 16.
    Rice RW (1998) Porosity of ceramics. Marcel Dekker, Inc., New York, p 10Google Scholar
  17. 17.
    Gdula RA (1971) Ceram Bull 50:555Google Scholar
  18. 18.
    MatWeb, Material Property Data, (Automation Creations, Inc., 1996) (
  19. 19.
    Molla J, Gonzalez M, Vila R, Ibarra A (1998) J Appl Phys 85:1727CrossRefGoogle Scholar
  20. 20.
    Valant M, Suvorov D (2003) Mater Chem Phys 79:104CrossRefGoogle Scholar
  21. 21.
    Penn SJ, Aiford NM, Templeton A, Wang X, Xu M, Reece M, Schrapel K (1997) J Am Ceram Soc 80:1885CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jinho Kim
    • 1
  • Seongjin Hwang
    • 1
  • Wookyung Sung
    • 1
  • Hyungsun Kim
    • 1
    Email author
  1. 1.School of Materials EngineeringInha UniversityIncheonKorea

Personalised recommendations