Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4050–4056 | Cite as

Current-activated pressure-assisted sintering (CAPAS) and nanoindentation mapping of dual matrix composites

  • K. MorsiEmail author
  • V. V. Patel
  • K. S. Moon
  • J. E. Garay
Rees Rawlings Festschrift

Abstract

Titanium boride (TiBw) whiskers are currently recognized as one of the most compatible reinforcements for titanium (Ti) that have positively affected its wear resistance and stiffness. The fracture toughness and ductility have, however, been reported to deteriorate at increased TiBw volume fractions, mainly due to the interlocking of these brittle TiB whiskers. This article investigates the processing of dual matrix Ti–TiBw composites, where microstructures are generated consisting of TiBw–Ti composite regions separated by a ductile, predominantly Ti, outer matrix. This microstructural design has the potential to prevent the continuous TiBw interlocking over the scale of the composite (at high TiBw volume fractions), and promote improved toughness of the material. The processing of these unique composites using current-activated pressure-assisted sintering (CAPAS) is discussed in this article. The effect of processing temperature on the microstructure and hardness of Ti–TiBw dual matrix composites is also discussed, together with a simultaneous imaging and modulus-mapping nanoindentation technique used to characterize the composites

Keywords

Spark Plasma Sinter Titanium Carbide Composite Reinforcement Composite Region Titanium Boride 

Notes

Acknowledgements

The authors would like to thank Dr. Steve Barlow for his help with electron microscopy, and Mr. Greg Morris and Mr. Michael Lester for their technical assistance throughout this project.

References

  1. 1.
    Gorsse S, Chaminade JP, Petitcorps YL (1998) Composites Part A 29(A):1229CrossRefGoogle Scholar
  2. 2.
    Morsi K, Patel VV (2007) J Mater Sci 42:2037CrossRefGoogle Scholar
  3. 3.
    Banerjee R, Collins PC, Fraser HL (2002) Adv Eng Mater 4(11):847CrossRefGoogle Scholar
  4. 4.
    Nardone VC, Strife JR, Prewo KM (1991) Metal Mater Trans 22A:171CrossRefGoogle Scholar
  5. 5.
    Deng X, Patterson BR, Chawla KK, Koopman MC, Fang Z, Lockwood G, Griffo A (2001) Int J Refractory Metals Hard Mater 19:547CrossRefGoogle Scholar
  6. 6.
    Deng X, Patterson BR, Chawla KK, Koopman MC, Mackin C, Fang Z, Lockwood G, Griffo A (2002) J Mater Sci Lett 21:707CrossRefGoogle Scholar
  7. 7.
    Fang Z, Lockwood G, Griffo A (1999) Metal Mater Trans 30A:3231CrossRefGoogle Scholar
  8. 8.
    Morsi K, Patel VV, Naraghi S, Garay JE (2008) J Mater Process Technol 196(1):236CrossRefGoogle Scholar
  9. 9.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763CrossRefGoogle Scholar
  10. 10.
    Anselmi-Tamburini U, Garay JE, Munir ZA (2005) Mater Sci Eng A 407:24CrossRefGoogle Scholar
  11. 11.
    Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Acta Mater 51:4487CrossRefGoogle Scholar
  12. 12.
    Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Appl Phys Lett 85(4):573CrossRefGoogle Scholar
  13. 13.
    Wang X, Casolco SR, Xu G, Garay JE (2007) Acta Mater 55:3611CrossRefGoogle Scholar
  14. 14.
    Feng H, Zhou Y, Jia D, Meng Q (2004) Compos Sci Technol 64(16):2495CrossRefGoogle Scholar
  15. 15.
    Feng H, Jia D, Zhou Y (2005) Composites: Part A 36:558CrossRefGoogle Scholar
  16. 16.
    Panda KB, Ravi Chandran KS (2003) Metal Mater Trans 34A(6):1371CrossRefGoogle Scholar
  17. 17.
    Stephen AJ, Houston JE (1991) Rev Sci Instrum 62(3):710CrossRefGoogle Scholar
  18. 18.
    Pethica JB, Oliver WC (1987) Phys Scr T19A:61CrossRefGoogle Scholar
  19. 19.
    Syed Asif SA, Wahl KJ, Colton RJ (1999) Rev Sci Instrum 70(5):2408CrossRefGoogle Scholar
  20. 20.
    Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564CrossRefGoogle Scholar
  21. 21.
    Uskokovic PS, Tang CY, Tsui CP, Ignjatovic N, Uskokovic DP (2007) J Eur Ceram Soc 27(2–3):1559CrossRefGoogle Scholar
  22. 22.
    Moon KS, Morsi K, Hong YK (2007) Int J Optomechatron 1:1CrossRefGoogle Scholar
  23. 23.
    Chakravartula A, Komvopoulos K (2006) Appl Phys Lett 88:131901CrossRefGoogle Scholar
  24. 24.
    Gorsse S, Miracle DB (2003) Acta Mater 51:2427CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Morsi
    • 1
    Email author
  • V. V. Patel
    • 1
  • K. S. Moon
    • 1
  • J. E. Garay
    • 2
  1. 1.Department of Mechanical EngineeringSan Diego State University (SDSU)San DiegoUSA
  2. 2.Department of Mechanical EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations