Journal of Materials Science

, Volume 43, Issue 4, pp 1265–1269 | Cite as

Thermal analysis and phase evolution of ferroelectric PbTiO3 obtained from silicate and borate based glasses

  • Pat SooksaenEmail author
  • Ian M. Reaney


This article assessed the glass formability for crystallization of lead titanate (PbTiO3) as the primary phase. It was found that silicate-based glasses formed glass as a block without the need for cold splatting, but B2O3-based glasses needed to be prepared by cold splatting to retard devitrification. Also, incorporation of BaO was favoured by an increase in the concentration of B2O3. DTA showed the crystallization of crystalline phases occurred above glass transition temperature. XRD traces supported the DTA data where the first exothermic peak in each case was presumed to be related to the crystallization of PbTiO3 (PT) phase. XRD also showed the lower c/a ratios compared to pure PT ceramic, which suggested three possibilities for lower values: crystal clamping by the rigid glass matrix, intrinsic size effect and incorporation of impurities in the PT phase.


Glass Transition Temperature Differential Thermal Analysis B2O3 Exothermic Peak NaNbO3 


  1. 1.
    Lines ME, Glass AM (1979) Principles and applications of ferroelectrics and related materials. Oxford University PressGoogle Scholar
  2. 2.
    Moulson AJ, Herbert JM (1996) Electroceramics: Materials-properties-applications. Chapman & HallGoogle Scholar
  3. 3.
    Jiang B, Peng JL, Bursill LA (2000) Size effects on ferroelectricity of ultrafine particles of PbTiO3. J Appl Phys 8(7):3462CrossRefGoogle Scholar
  4. 4.
    Heartling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):798Google Scholar
  5. 5.
    Strnad Z (1986) Glass-ceramic materials. Glass science and technology, vol 8. Elsevier Science Publishing Company, Inc., CzechoslovakiaGoogle Scholar
  6. 6.
    Halliyal A, Bhalla AS, Newnham RE, Cross LE (1989) In: Lewis MH (ed) Glass-ceramics for piezoelectric and pyroelectric devices, in Glasses and glass-ceramics, Chapman and Hall, University Press Cambridge, LondonGoogle Scholar
  7. 7.
    Tumala RR (1991) Ceramic and glass-ceramic packaging in the 1990s. J Am Ceram Soc 74:895CrossRefGoogle Scholar
  8. 8.
    Tumala RR, Knickerbocker JU, Knickerbocker SH, Herron LW (1992) High performance glass-ceramic/copper multilayer substrate with thin film redistribution. IBM J Res Develop 36(5):890Google Scholar
  9. 9.
    Houng B, Kim CY, Haun MJ (2000) Densification, crystallization and electrical properties of lead zirconate titanate glass-ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 47(4):808CrossRefGoogle Scholar
  10. 10.
    Partridge G, Elyard CA, Budd MI (1989) In: Lewis MH (ed) Glasses and glass-ceramics, in Glasses and glass-ceramics, Chapman and Hall, University Press Cambridge, LondonGoogle Scholar
  11. 11.
    Duan F, Fang C, Zhu H (1998) Properties and applications of a piezoelectric glass-crystalline phase composites in the BaO–SrO–TiO2–SiO2 system. Mat Lett 34:184CrossRefGoogle Scholar
  12. 12.
    Gardopee GJ, Newnham RE, Halliyal AG, Bhalla AS (1980) Pyroelectric glass-ceramics. Appl Phys Lett 36(10):817CrossRefGoogle Scholar
  13. 13.
    Houng B, Haun MJ (1994) Lead titanate and lead zirconate titanate piezoelectric glass-ceramics. Ferroelectrics 154:107CrossRefGoogle Scholar
  14. 14.
    Thakur OP, Kumar D, Parkash O, Pandey L (2003) Electrical characterization of SrTiO3 borosilicate glass ceramics system with bismuth oxide addition using impedance spectroscopy. Mat Chem and Phys 78:751CrossRefGoogle Scholar
  15. 15.
    Yao K, Zhang L (1995) Preparation and structure of BaTiO3 ferroelectric glass-ceramics. Chinese Science Bulletin 40(8):694Google Scholar
  16. 16.
    Glass AM, Lines ME, Nassau K, Shiever JW (1977) Anomalous dielectric behavior and reversible pyroelectricity in a roller-quenched LiNbO3 and LiTaO3 glass. Appl Phys Lett 31(4):249CrossRefGoogle Scholar
  17. 17.
    Layton MM and Herzog A (1967) Nucleation and crystallization of NaNbO3 from glasses in the Na2O–Nb2O5–SiO2 system. J Am Ceram Soc 50(7)Google Scholar
  18. 18.
    Grossman DG, Isard JO (1969) Lead titanate glass-ceramics. J Am Ceram Soc 2(4)Google Scholar
  19. 19.
    Graaf MACGvd, Burggraaf AJ, Lodder JC (1974) Microstructure development and crystallization kinetics of PbTiO3 from PbO–TiO2–Al2O3–SiO2 glass. Glass Technol 15(16):143Google Scholar
  20. 20.
    Shyu JJ, Yang YS (1995) Crystallization of a PbO–BaO–TiO2–Al2O3–SiO2 glass. J Am Ceram Soc 78(6):1463CrossRefGoogle Scholar
  21. 21.
    Bhargava A, Shelby JE, Snyder RL (1988) Crystallization of glasses in the system BaO–TiO2–B2O3. J Non-Cryst Solids 102:136CrossRefGoogle Scholar
  22. 22.
    Grossman DG, Isard JO (1969) Crystal clamping in PbTiO3 glass-ceramics. J Mater Sci 4:1059CrossRefGoogle Scholar
  23. 23.
    Kokubo T, Tashiro M (1973) Dielectric properties of fin-grained PbTiO3 crystals precipitated in a glass. J Non-Cryst Solids 13:328CrossRefGoogle Scholar
  24. 24.
    Shyu JJ, Yang YS (1996) Crystallization and properties of a perovskite glass-ceramic. J Mater Sci 31:4859CrossRefGoogle Scholar
  25. 25.
    Iynch SM, Shelby JE (1984) Crystal clamping in lead titanate glass-ceramics. J Am Ceram Soc 67(6):424CrossRefGoogle Scholar
  26. 26.
    Ruiz-Valdes JJ, Gorokhovsky AV, Escalante-Garcia JI (2004) Glass-ceramic materials with regulated dielectric properties based on the system BaO–PbO–TiO2–B2O3–Al2O3. J Eur Ceram Soc 24:1505CrossRefGoogle Scholar
  27. 27.
    Reece MJ, Worrell CA, Hill GJ, Morrell R (1996) Microstructures and dielectric properties of ferroelectric glass-ceramics. J Am Ceram Soc 79(1):17CrossRefGoogle Scholar
  28. 28.
    McCauley D, Newnham RE, Randall CA (1998) Intrinsic size efects in barium titanate glass-ceramic. J Am Ceram Soc 81(4):979CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Faculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon PathomThailand
  2. 2.Department of Engineering Materials, Sir Robert Hadfield BuildingUniversity of SheffieldSheffieldUK

Personalised recommendations