Journal of Materials Science

, Volume 43, Issue 11, pp 3750–3760 | Cite as

First principles study of three-component SrTiO3/BaTiO3/PbTiO3 ferroelectric superlattices

  • S. H. Shah
  • P. D. BristoweEmail author
  • A. M. Kolpak
  • A. M. Rappe
Intergranular and Interphase Boundaries in Materials


The geometrical, chemical and ferroelectric properties of a new nanoscale short-period three-component SrTiO3/BaTiO3/PbTiO3 perovskite superlattice are investigated using a first principles density functional approach. The study focuses on varying the thickness of each component in the superlattice and determining the resulting lattice distortion and total polarization. Thicknesses of up to three unit cells in a single component are considered and the in-plane lattice constants normal to the [001] stacking direction are fixed to the bulk SrTiO3 values to simulate a rigid substrate. It is found that the PbTiO3 layers play a key role in strain and polarization enhancement. By increasing the amount of PbTiO3 in the superlattices the strain in the other components increases significantly resulting in an enhanced total polarization of the superlattice relative to bulk BaTiO3. Increasing the number of BaTiO3 layers also improves the overall polarization. All the SrTiO3 layers in each superlattice are found to be highly polarized. Many of the calculated features are similar to those found previously by others for the SrTiO3/BaTiO3/CaTiO3 superlattice, although in the present study significantly greater enhancement factors and polarization values are found. The predicted enhancement of the polarization is mostly attributed to lattice strain due to mismatch of the in-plane lattice constant of the three-component materials.


BaTiO3 Lattice Distortion Total Polarization Polarization Enhancement Born Effective Charge 



Support for this work was provided by the Higher Education Commission of Pakistan, the US Office of Naval Research under grant N00014-00-1-0372 and by the US Department of Energy, Office of Basic Energy Sciences under grant DE-FG02-07ER15920. The calculations were performed using the high-performance computing facility at the University of Cambridge.


  1. 1.
    Jayadevan KP, Tseng TY (2002) J Mater Sci Mater Electronics 13:439CrossRefGoogle Scholar
  2. 2.
    Junquera J, Zimmer M, Ordejon P, Ghosez P (2003) Phys Rev B 67:155327CrossRefGoogle Scholar
  3. 3.
    Neaton JB, Rabe KM (2003) Appl Phys Lett 82:1586CrossRefGoogle Scholar
  4. 4.
    Johnston K, Huang XY, Neaton JB, Rabe KM (2005) Phys Rev B 71:100103CrossRefGoogle Scholar
  5. 5.
    Lee J, Kim L, Kim J, Jung D (2006) J Appl Phys 100:051613CrossRefGoogle Scholar
  6. 6.
    Tian W, Jiang JC, Pan XQ (2006) Appl Phys Lett 89:092905CrossRefGoogle Scholar
  7. 7.
    Shimuta T, Nakagawara O, Makino T, Arai S (2002) J Appl Phys 91:2290CrossRefGoogle Scholar
  8. 8.
    Jiang JC, Pan XQ, Tan W (1999) Appl Phys Lett 74:2851CrossRefGoogle Scholar
  9. 9.
    Lichtensteiger C, Triscone JM, Junquera J, Ghosez P (2005) Phys Rev Lett 94:047603CrossRefGoogle Scholar
  10. 10.
    Dawber M, Lichtensteiger C, Cantoni M, Veithen M, Ghosez P, Johnston K, Rabe KM, Triscone JM (2005) Phys Rev Lett 95:177601CrossRefGoogle Scholar
  11. 11.
    Dawber M, Lichtensteiger C, Paruch P, Triscone JM (2006) IEEE Trans Ultrason Ferr Freq Control 53:2261CrossRefGoogle Scholar
  12. 12.
    Bungaro C, Rabe KM (2004) Phys Rev B 69:184101CrossRefGoogle Scholar
  13. 13.
    Yang K, Wang CL, Li JC, Zhao ML, Wang XY (2006) Solid State Comm 139:144CrossRefGoogle Scholar
  14. 14.
    Harigai T, Nam SM, Kakemoto H, Wada S, Saito K, Tsurumi T (2006) Thin Solid Films 509:13CrossRefGoogle Scholar
  15. 15.
    Yang K, Wang C, Li J, Zhang C, Zhang R, Zhang Y, Wu Q, Lv Y, Yin N (2007) Phys Rev B 75:224117CrossRefGoogle Scholar
  16. 16.
    Specht ED, Christen HM, Norton DP, Boatner LA (1998) Phys Rev Lett 80:4317CrossRefGoogle Scholar
  17. 17.
    Le Marrec F, Farhi R, El Marssi M, Dellis JL, Karkut MG, Ariosa D (2000) Phys Rev B 61:R6447CrossRefGoogle Scholar
  18. 18.
    Le Marrec F, Farhi F, Dkhil B, Chevreul J, Karkut MG (2001) J Eur Ceram Soc 21:1615CrossRefGoogle Scholar
  19. 19.
    Le Marrec F, Farhi R, El Marssi M, Dellis JL, Ariosa D, Karkut MG (2001) Ferroelectrics 254:1CrossRefGoogle Scholar
  20. 20.
    Le Marrec F, Farhi R, Ariosa D, El Marssi M, Dellis JL, Karkut MG (2000) Ferroelectrics 241:1769CrossRefGoogle Scholar
  21. 21.
    Sai N, Kolpak AM, Rappe AM (2005) Phys Rev B72:020101(R)CrossRefGoogle Scholar
  22. 22.
    Huang N, Liu Z, Wu Z, Wu J, Duan W, Gu BL, Zhang XW (2003) Phys Rev Lett 91:067602CrossRefGoogle Scholar
  23. 23.
    George AM, Iniguez J, Bellaiche L (2001) Nature 413:54CrossRefGoogle Scholar
  24. 24.
    Dieguez O, Rabe KM, Vanderbilt D (2005) Phys Rev B 72:144101CrossRefGoogle Scholar
  25. 25.
    Rabe KM (2005) Curr Opin Solid State Mater Sci 9:122CrossRefGoogle Scholar
  26. 26.
    Ghosez P, Junquera J (2006) Handbook of theoretical and computational technology, Chap. 134. American Scientific Publisher, Stevenson Ranch, CAGoogle Scholar
  27. 27.
    Ramer NJ, Lewis SP, Mele EJ, Rappe AM (1998) In: Cohen RE (ed) Workshop on fundamental physics of ferroelectrics. AIP, Woodbury, p 156Google Scholar
  28. 28.
    Ramer NJ, Mele EJ, Rappe AM (1998) Ferroelectrics 206:31CrossRefGoogle Scholar
  29. 29.
    Sepliarsky M, Phillpot SR, Wolf D, Stachiotti MG, Migoni RL (2001) Phys Rev B 64:R060101CrossRefGoogle Scholar
  30. 30.
    Iniguez J, Bellaiche L (2001) Phys Rev Lett 87:095503CrossRefGoogle Scholar
  31. 31.
    Sai N, Meyer B, Vanderbilt D (2000) Phys Rev Lett 84:5636CrossRefGoogle Scholar
  32. 32.
    Lee HN, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH (2005) Nature 433:395CrossRefGoogle Scholar
  33. 33.
    Warusawithana MP, Colla EV, Eckstein JN, Weissman MB (2003) Phys Rev Lett 90:036802CrossRefGoogle Scholar
  34. 34.
    Nakhmanson SM, Rabe KM, Vanderbilt D (2005) Appl Phys Lett 87:102906CrossRefGoogle Scholar
  35. 35.
    Nakhmanson SM, Rabe KM, Vanderbilt D (2006) Phys Rev B 73:060101CrossRefGoogle Scholar
  36. 36.
    Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64:1045CrossRefGoogle Scholar
  37. 37.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) Z Kristallogr 220:567Google Scholar
  38. 38.
    Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Phys Rev B41:1227CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Ramer NJ, Rappe AM (1999) Phys Rev B59:12471CrossRefGoogle Scholar
  41. 41.
    Grinberg I, Ramer NJ, Rappe AM (2000) Phys Rev B62:2311CrossRefGoogle Scholar
  42. 42.
    Grinberg I, Ramer NJ, Rappe AM (2001) Phys Rev B63:201102(R)CrossRefGoogle Scholar
  43. 43.
    Grinberg I, Ramer NJ, Rappe AM (2001) In: Krakauer H (ed) Workshop on fundamental physics of ferroelectrics. AIP, Melville, p 211Google Scholar
  44. 44.
    Perdew JP, Zunger A (1981) Phys Rev B 23:5048CrossRefGoogle Scholar
  45. 45.
    King-Smith RD, Vanderbilt D (1994) Phys Rev B 49:5828CrossRefGoogle Scholar
  46. 46.
    Fischer TH, Almlof J (1992) J Phys Chem 96:9768CrossRefGoogle Scholar
  47. 47.
    Nakagawara O, Kobayashi M, Yoshino Y, Katayama Y, Tabata H, Kawai T (1995) J Appl Phys 78:7226CrossRefGoogle Scholar
  48. 48.
    Johnston K, Castell MR, Paxton AT, Finnis MW (2004) Phys Rev B 70:085415CrossRefGoogle Scholar
  49. 49.
    Evans HT (1961) Acta Cryst 14:1019CrossRefGoogle Scholar
  50. 50.
    Ghosez P, Gonze X, Michenaud JP (1999) Ferroelectrics 220:1CrossRefGoogle Scholar
  51. 51.
    Kwei GH, Lawson AC, Billinge SJL, Cheong SW (1993) J Phys Chem 97:2368CrossRefGoogle Scholar
  52. 52.
    Glazer AM, Mabud SA (1978) Acta Cryst B34:1065CrossRefGoogle Scholar
  53. 53.
    Saghi-Szabo G, Cohen RE, Krakauer H (1998) Phys Rev Lett 80:4321CrossRefGoogle Scholar
  54. 54.
    Garcia A, Vanderbilt D (1996) Phys Rev B 54:3817CrossRefGoogle Scholar
  55. 55.
    Ghosez P, Michenaud JP, Gonze X (1998) Phys Rev B 58:6224CrossRefGoogle Scholar
  56. 56.
    Lasota C, Wang CZ, Yu R, Krakauer H (1997) Ferroelectrics 194:109CrossRefGoogle Scholar
  57. 57.
    King-Smith RD, Vanderbilt D (1993) Phys Rev B 47:1651CrossRefGoogle Scholar
  58. 58.
    Wieder HH (1955) Phys Rev 99:1161CrossRefGoogle Scholar
  59. 59.
    Zhong W, King-Smith RD, Vanderbilt D (1994) Phys Rev Lett 72:3618CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. H. Shah
    • 1
  • P. D. Bristowe
    • 1
    Email author
  • A. M. Kolpak
    • 2
  • A. M. Rappe
    • 2
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations