Advertisement

Journal of Materials Science

, Volume 43, Issue 2, pp 621–634 | Cite as

Protonated niobate/titanate pyrochlores via lead-acid exchange in Pb1.5Nb2O6.5 and Pb2Nb1.33Ti0.67O6.67

  • Alicia B. BruneEmail author
  • Robert I. Mangham
  • William T. Petuskey
Article

Abstract

Hydrogen-based niobates and niobate-titanates were derived from the pyrochlores Pb1.5Nb2O6.5 (PN) and Pb2Nb1.33Ti0.67O6.67 (PNT) by ion exchange in acid baths, affording sub-micron size white powders. The niobium sublattice was left intact, as shown by X-ray diffraction. A combination of stripping and thermogravimetric analyses gave the effective formulas H2.66Pb0.17Nb2O6.5·0.5H2O (HPN) and H3.88Pb0.06Nb1.33Ti0.67O6.67·0.33H2O (HPNT). The corresponding structural refinements gave good fits to the XRD data. Densities measured by He pycnometry agreed with densities calculated from XRD analyses and the effective formulas. Thermal stability was assessed by TGA, DSC, and XRD. With increasing temperature, HPN and HPNT lost weight (H2O), becoming amorphous, and then transforming to crystalline phases, with greatly reduced particle size. HPN was more stable than HPNT. The electrical conductivities of powder compacts in wet atmospheres were moderate and attributed mainly to proton conduction; i.e., 10−6 to 10−5 S cm−1 for HPN and 10−7 to 10−6 S cm−1 for HPNT (from room temperature to 230 °C). Experimental results were interpreted in terms of Nb(V) being a stronger electron acceptor than Ti(IV).

Keywords

Differential Scanning Calorimetry Niobium Oxide Pyrochlore Structure Differential Scanning Calorimetry Profile Niobium Pentoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge Dr. Shuling Guo and Dr. J.-P. Belieres for obtaining DSC data, Dr. Z. Liu for taking SEM micrographs, Dr. K. Leinenweber and F. He for helping with XRD, and Barry Wilkens for performing the Ion Beam Analysis. Financial support from the Air Force Office of Scientific Research under grants 155A-99-0031 and FA95500410153 is also gratefully acknowledged.

References

  1. 1.
    Mangham RI (2003) Ph.D. Dissertation, Arizona State UniversityGoogle Scholar
  2. 2.
    Groult D, Michel C, Raveau B (1974) Inorg Nucl Chem 36:61CrossRefGoogle Scholar
  3. 3.
    England WA, Cross MG, Hamnett A, Wiseman PJ, Goodenough JB (1980) Solid State Ionics 1:231CrossRefGoogle Scholar
  4. 4.
    Chowdhry U, Barkley JR, English AD, Sleight AW (1982) Mat Res Bull 17:917CrossRefGoogle Scholar
  5. 5.
    Turrillas X, Delabouglise G, Jouberet JG, Fournier T, Muller J (1985) Solid State Ionics 17:169CrossRefGoogle Scholar
  6. 6.
    Clearfield A (1988) Chem Rev 88:125CrossRefGoogle Scholar
  7. 7.
    Catti M, Mari CM, Cazzanelli E, Mariotto G (1990) Solid State Ionics 40/41:900CrossRefGoogle Scholar
  8. 8.
    Lewandowski JT, Pickering IJ, Jacobson AJ (1992) Mat Res Bull 27:981CrossRefGoogle Scholar
  9. 9.
    Guo J-D, Reis KP, Whittingham MS (1992) Solid State Ionics 53–56:305CrossRefGoogle Scholar
  10. 10.
    Möller T, Clearfield A, Harjula R (2001) Chem Mater 13:4767CrossRefGoogle Scholar
  11. 11.
    Aleshin E, Roy R (1962) J Am Chem Soc 45:18Google Scholar
  12. 12.
    Subramanian MA, Aravamudan G, Subba Rao GV (1983) Prog Solid State Ch 15:55CrossRefGoogle Scholar
  13. 13.
    Sleight AW (1968) Inorg Chem 7:1704CrossRefGoogle Scholar
  14. 14.
    Wilde PJ, Catlow CRA (1968) Solid State Ionics 112:173CrossRefGoogle Scholar
  15. 15.
    Sickafus KE, Minervini L, Grimes RW, Valdez JA, Ishimaru M, Li F, McClellan KJ, Hartmann T (2000) Science 229:748CrossRefGoogle Scholar
  16. 16.
    Hahn T (ed) (2002) International tables of crystallography, Vol A. Kluwer Academic Publisher, Dordrecht, p 696Google Scholar
  17. 17.
    Vanderborne MT, Husson E (1984) J Solid State Chem 53:253CrossRefGoogle Scholar
  18. 18.
    Butler MA, Biefeld RM (1979) Phys Rev B 19:5455CrossRefGoogle Scholar
  19. 19.
    England WA, Slade RCT (1980) Solid State Commun 33:997CrossRefGoogle Scholar
  20. 20.
    Groult D, Pannetier J, Raveau B (1982) J Solid State Chem 41:277CrossRefGoogle Scholar
  21. 21.
    Dickens PC, Weller MT (1986) Solid State Commun 59:569CrossRefGoogle Scholar
  22. 22.
    Doremieux-Morin C, Fraissard JP, Besse JP, Chevalier R (1985) Solid State Ionics 17:93CrossRefGoogle Scholar
  23. 23.
    Slade RCT, Hall GP, Ramanan A, Prince E (1996) Solid State Ionics 92:171CrossRefGoogle Scholar
  24. 24.
    Alonso JA, Turrillas X (2005) Dalton Trans (5):865Google Scholar
  25. 25.
    Trubnikov IL (2000) Refract Ind Ceram 41:396CrossRefGoogle Scholar
  26. 26.
    Colomban P (1992) Proton conductors. Cambridge University Press, Cambridge, p 284Google Scholar
  27. 27.
    Wachs JE, Jehng JM, Deo G, Hu H, Arora N (1996) Catal Today 28:199CrossRefGoogle Scholar
  28. 28.
    Zuo Z, Ye J, Arakawa H (2003) Int J Hydrogen Energ 28:663CrossRefGoogle Scholar
  29. 29.
    Lucas P, Petuskey WT (2001) J Am Ceram Soc 84:2150CrossRefGoogle Scholar
  30. 30.
    Mangham R, Petuskey WT (2005) Ceram Trans 169:139Google Scholar
  31. 31.
    Remy H (1956) Treatise on inorganic chemistry, vol II. Elsevier, Amsterdam, p 108Google Scholar
  32. 32.
    Larson AC, Von Dreele RB (1994) General Structure Analytic System (GSAS), Los Alamos National Laboratory Report (LAUR 86–748 (1994))Google Scholar
  33. 33.
    Beech F, Jordan WM, Catlow CRA, Santoro A, Steele BCH (1988) J Solid State Chem 77:322CrossRefGoogle Scholar
  34. 34.
    Bauerle JE (1969) J Phys Chem Solids 30:2657CrossRefGoogle Scholar
  35. 35.
    Traversa E (1985) Sensor Actuat B 223:135Google Scholar
  36. 36.
    Larring Y, Norby T (1997) Solid State Ionics 97:523CrossRefGoogle Scholar
  37. 37.
    Colomban P, Romain F, Neiman A, Animitsa I (2001) Solid State Ionics 145:339CrossRefGoogle Scholar
  38. 38.
    Brune A, Wagner JB Jr. (1995) Mater Res Bull 30:573CrossRefGoogle Scholar
  39. 39.
    Crank J (1952) Philos Mag 43:811Google Scholar
  40. 40.
    Ruthven DM (1984) Principles of adsorption and adsorption processes. J. Wiley, New York, p 168Google Scholar
  41. 41.
    Glicksman ME (2000) Diffusion in solids: field theory, solid state and applications. J. Wiley, New York, p 101Google Scholar
  42. 42.
    Barrie JA (1968) In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, London, p 276Google Scholar
  43. 43.
    Fukuda M (1996) Polym Eng Sci 36:558CrossRefGoogle Scholar
  44. 44.
    Yoon S-H, Jeon Y (1998) Palpu Chongi Gisul 30:46Google Scholar
  45. 45.
    Wang W, Virkar AV (2004) Sensor Actuat B 98:282CrossRefGoogle Scholar
  46. 46.
    Brainina KH, Neyman E (1993) Electroanalytical stripping methods. John Wiley, New York, p 5Google Scholar
  47. 47.
    Wang J (1985) Stripping analysis. VCH, New York, p 32Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alicia B. Brune
    • 1
    Email author
  • Robert I. Mangham
    • 1
  • William T. Petuskey
    • 1
  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations