Journal of Materials Science

, Volume 43, Issue 9, pp 2990–3000 | Cite as

Effect of single-step strain and annealing on grain boundary character distribution and intergranular corrosion in Alloy 690

  • Shuang XiaEmail author
  • Bangxin Zhou
  • Wenjue Chen
Interface Science


The effects of single-step thermomechanical treatments on the grain boundary character distribution (GBCD) and intergranular corrosion of Alloy 690 (Ni–30Cr–10Fe, wt.%) are investigated. High proportion of low ΣCSL grain boundaries (more than 70% according to Palumbo–Aust criterion) associating with large size grains-cluster microstructure is obtained through one-step thermomechanical treatment of 5% cold rolling followed by annealing at 1,100 °C for 5 min. Nucleation density of recrystallization and multiple twinning are the key factors affecting the GBCD. The grains-cluster is produced by multiple twinning starting from a single recrystallization nucleus. That the mean size of the grains-clusters and proportion of low ΣCSL boundaries decrease with the increasing strain, is caused by the increasing nucleation density of recrystallization with the increase of strain. The specimen with large size grains-cluster microstructure and high proportion of low ΣCSL boundaries exhibits much better resistance to mass loss during intergranular corrosion testing than that with small size grains-cluster microstructure and relatively low proportion of low ΣCSL boundaries.


Coincident Site Lattice Intergranular Corrosion Nucleation Density Random Boundary Coincident Site Lattice Boundary 



This work was supported by Major State Basic Research Development Program of China (2006CB605001) and Shanghai leading academic discipline project (T0101).


  1. 1.
    Thuvander M, Stiller K (2000) Mat Sci Eng A 281:96–103CrossRefGoogle Scholar
  2. 2.
    Qiu S, Su X, Wen Y (1995) Nuclear Power Engineering 16:336–340Google Scholar
  3. 3.
    Kurban M, Erb U, Aust KT (2006) Scripta Mater 54:1053–1058CrossRefGoogle Scholar
  4. 4.
    Bi HY, Kokawa H, Wang ZJ (2003) Scripta Mater 49:219–223CrossRefGoogle Scholar
  5. 5.
    Bennett BW, Pickering HW (1987) Metall Trans A 18A:1117–1124CrossRefGoogle Scholar
  6. 6.
    Palumbo G, Erb U (1999) MRS Bull 24:27–32CrossRefGoogle Scholar
  7. 7.
    Crawford DC, Was GS (1992) Metall Trans A 23A:1195–1206CrossRefGoogle Scholar
  8. 8.
    Watanabe T (1984) Res Mech 11:47–82Google Scholar
  9. 9.
    Kronberg ML, Wilson FH (1949) Trans Am Inst Min Engrs 185:501Google Scholar
  10. 10.
    Lehockey EM, Limoges D, Palumbo G, Sklarchuk J, Tomantschger K, Vincze A (1999) J Power Sources 78:79–83CrossRefGoogle Scholar
  11. 11.
    Lin P, Palumbo G, Erb U (1995) Scripta Metall Mater 33:1387–1392CrossRefGoogle Scholar
  12. 12.
    King WE, Schwartz AJ (1998) Scripta Mater 38:449–455CrossRefGoogle Scholar
  13. 13.
    Shimada M, Kokawa H, Wang ZJ (2002) Acta Mater 50:2331–2341CrossRefGoogle Scholar
  14. 14.
    Michiuchi M, Kokawa H, Wang ZJ, Sato YS, Sakai K (2006) Acta Mater 554:5179–5184CrossRefGoogle Scholar
  15. 15.
    Randle V (2004) Acta Mater 52:4067–4081CrossRefGoogle Scholar
  16. 16.
    Randle V (1999) Acta Mater 47:4187–4196CrossRefGoogle Scholar
  17. 17.
    Kumar M, Schwartz AJ, King WE (2002) Acta Mater 50:2599–2612CrossRefGoogle Scholar
  18. 18.
    Alexandreanu B, Capell B, Was G (2001) Mat Sci Eng A 300:94–104CrossRefGoogle Scholar
  19. 19.
    Lee S-L, Richards NL (2005) Mat Sci Eng A 390:81–87CrossRefGoogle Scholar
  20. 20.
    Guyot BM, Richards NL (2005) Mat Sci Eng A 395:87–97CrossRefGoogle Scholar
  21. 21.
    Tan L, Sridharan K, Allen TR (2006) J Nucl Mater 348:263–271CrossRefGoogle Scholar
  22. 22.
    Palumbo G, Aust KT (1990) Acta Metall Mater 38:2343–2352CrossRefGoogle Scholar
  23. 23.
    Gertsman VY, Henager CH (2003) Interface Sci 11:403–415CrossRefGoogle Scholar
  24. 24.
    Gottstein G (1984) Acta Metall 32:1117–1138CrossRefGoogle Scholar
  25. 25.
    Fullman RL, Fisher JC (1951) J Appl Phys 22:1350–1355CrossRefGoogle Scholar
  26. 26.
    Gleiter H (1969) Acta Metall 17:1421–1428CrossRefGoogle Scholar
  27. 27.
    Meyers MA, Murr LE (1978) Acta Metall 26:951–962CrossRefGoogle Scholar
  28. 28.
    Mahajan S, Pande CS, Imam MA, Rath BB (1997) Acta Mater 45:2633–2638CrossRefGoogle Scholar
  29. 29.
    Berger A, Wilbrandt P-J, Ernst F (1988) Prog Mater Sci 32:1–95CrossRefGoogle Scholar
  30. 30.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd ed. Elsevier, OxfordGoogle Scholar
  31. 31.
    Kumar M, King WE, Schwartz AJ (2000) Acta Mater 48:2081–2091CrossRefGoogle Scholar
  32. 32.
    Schuh CA, Kumar M, King WE (2003) Acta Mater 51:678–700Google Scholar
  33. 33.
    Schuh CA, Kumar M, King WE (2003) Z Metallkd 94:323–328CrossRefGoogle Scholar
  34. 34.
    Brandon DG (1966) Acta Metall 14:1479–1484CrossRefGoogle Scholar
  35. 35.
    Randle V (1996) The role of the coincidence site lattice in grain boundary engineering. Cambridge University, Cambridge, UKGoogle Scholar
  36. 36.
    Palumbo G, Aust KT, Lehockey EM (1998) Script Mater 38:1685–1690CrossRefGoogle Scholar
  37. 37.
    Kim SH, Erb U, Aust KT, Palumbo G (2001) Script Mater 44:835–839CrossRefGoogle Scholar
  38. 38.
    Zhou Y, Aust KT, Erb U, Palumbo G (2001) Script Mater 45:49–54CrossRefGoogle Scholar
  39. 39.
    Randle V, Davies H (2002) Ultramicroscopy 90:153–162CrossRefGoogle Scholar
  40. 40.
    Randle V, Davies P (1999) Interface Sci 7:5–13CrossRefGoogle Scholar
  41. 41.
    Gertsman VY, Bruemmer SM (2001) Acta Mater 49:1589–1598CrossRefGoogle Scholar
  42. 42.
    Lin H, Pope DP (1993) Acta Metall Mater 41:553–562CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of MaterialsShanghai UniversityShanghaiP.R. China

Personalised recommendations