Journal of Materials Science

, Volume 43, Issue 2, pp 680–683 | Cite as

Cathodoluminescence characterization of rare earth doped composite materials based on porous GaP

  • B. Sánchez
  • B. MéndezEmail author
  • J. Piqueras
  • L. Sirbu
  • I. M. Tiginyanu
  • V. V. Ursaki


Porous GaP layers doped with erbium or europium elements have been obtained by electrochemical etching and further impregnation processes. The thermal treatments for optical activation of rare earth (RE) ions lead to partial oxidation of porous GaP skeleton and a composite material is obtained. The presence of ErPO4 and EuPO4 oxide nanophases is detected by X-ray diffraction (XRD) analysis. Visible luminescence from RE ions in the composite material has been investigated by means of the cathodoluminescence (CL) technique in the scanning electron microscope. Intense red and green emission lines characteristic from Er3+ and Eu3+ ions dominate the CL spectra in the case of parallel and regular nanotubes in the samples. The role of the oxygen content and the detected phases in the luminescence results are discussed.


Rare Earth Emission Line Porous Layer Ga2O3 High Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by MEC (project MAT-2003-00455).


  1. 1.
    Canham LT (1990) Appl Phys Lett 57:1046CrossRefGoogle Scholar
  2. 2.
    Föll H, Langa S, Carstensen J, Christophersen M, Tiginyanu IM (2003) Adv Mater 15:183CrossRefGoogle Scholar
  3. 3.
    Anedda A, Serpi A, Karavanskii VA, Tiginyanu IM, Ichizli VM (1995) Appl Phys Lett 67:3316CrossRefGoogle Scholar
  4. 4.
    Kuriyama K, Ushiyama K, Ohbora K, Miyamoto Y, Takeda S (1998) Phys Rev B 58:1103CrossRefGoogle Scholar
  5. 5.
    Stevens-Kalceff M, Tiginyanu IM, Langa S, Föll H (2001) J Appl Phys 89:2560CrossRefGoogle Scholar
  6. 6.
    Nogales E, Méndez B, Piqueras J, Plugaru R, Coraci A, García JA (2002) J Phys D 35:295CrossRefGoogle Scholar
  7. 7.
    Favennec PN, Haridon HL, Salvi M, Muotonnet D, Le Guillo Y (1989) Electron Lett 25:718CrossRefGoogle Scholar
  8. 8.
    Nogales E, Martin RW, O’Donnell KP, Lorenz K, Alves E, Ruffenach S, Briot O (2006) Appl Phys Lett 88:031902CrossRefGoogle Scholar
  9. 9.
    Gollakota P, Dhawan A, Wellenius P, Lunardi LM, Muth JF, Saripalli YN, Peng HY, Everitt HO (2006) Appl Phys Lett 88:221906CrossRefGoogle Scholar
  10. 10.
    Sirbu L, Ursaki VV, Tiginyanu IM, Dolgaleva K, Boyd RW (2007) Phys Stat Sol (RRL) 1:R13CrossRefGoogle Scholar
  11. 11.
    Domínguez-Adame F, Piqueras J (1989) Mater Chem Phys 21:539CrossRefGoogle Scholar
  12. 12.
    Nogales E, Méndez B, Piqueras J (2005) Appl Phys Lett 86:113112CrossRefGoogle Scholar
  13. 13.
    Villora EG, Atou T, Sekiguchi T, Sugawara T, Kikuchi M, Fukuda T (2001) Solid State Commun 120:455CrossRefGoogle Scholar
  14. 14.
    Nogales E, Méndez B, Piqueras J, Plugaru R, Coraci A, García JA (2002) J Phys D: Appl Phys 35:295CrossRefGoogle Scholar
  15. 15.
    Colon JE, Elsaesser DW, Yeo YK, Hengehold RL, Pomrenke GS (1993) Appl Phys Lett 63:216CrossRefGoogle Scholar
  16. 16.
    Yoshida M, Hiraka K, Ohta H, Fujiwara Y, Koizumi A, Takeda Y (2004) J Appl Phys 96:4189CrossRefGoogle Scholar
  17. 17.
    Phillips JC (1994) J Appl Phys 76:5896CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • B. Sánchez
    • 1
  • B. Méndez
    • 1
    Email author
  • J. Piqueras
    • 1
  • L. Sirbu
    • 2
  • I. M. Tiginyanu
    • 2
    • 3
  • V. V. Ursaki
    • 3
  1. 1.Departamento Física de Materiales, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain
  2. 2.National Center for Materials Study and TestingTechnical University of MoldovaChisinauRepublic of Moldova
  3. 3.Laboratory of Low-Dimensional Semiconductor StructuresInstitute of Applied Physics, Academy of Sciences of MoldovaChisinauRepublic of Moldova

Personalised recommendations