Advertisement

Journal of Materials Science

, Volume 43, Issue 2, pp 652–659 | Cite as

Freeze cast carbon nanotube-alumina nanoparticle green composites

  • Kathy LuEmail author
Article

Abstract

CNT-Al2O3 nanoparticle suspensions without and with sodium dodecyl sulfate (SDS) were freeze-cast into green samples. SDS drastically improves Carbon nanotube (CNT) dispersion and CNT-Al2O3 nanocomposite homogeneity. Green density of the CNT-Al2O3 nanocomposites decreases with CNT addition. Green strength of the CNT-Al2O3 nanocomposites increases with the CNT content when CNTs are well separated. The CNT-Al2O3 nanocomposites show medium energy fracture mode during equibiaxial flexural strength testing and change color in response to CNT content and distribution in the Al2O3 nanoparticle matrix.

Keywords

Al2O3 Sodium Dodecyl Sulfate Critical Micelle Concentration Al2O3 Nanoparticles Particle Size Distribution Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Oak Ridge Associated Universities and Petroleum Research Fund. The author also thanks Chris Kessler and Xiaojing Zhu for certain data collection and Prof. Brian Love for the equibiaxial flexural strength testing.

References

  1. 1.
    Kinloch IA, Roberts SA, Windle AH (2002) Polymer 43:7483CrossRefGoogle Scholar
  2. 2.
    Yu M-F, Files BS, Arepalli S, Ruoff RS (2000) Phys Rev Lett 84:5552CrossRefGoogle Scholar
  3. 3.
    Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS (2003) Macromol Rapid Commun 24:1070CrossRefGoogle Scholar
  4. 4.
    Curtin WA, Sheldon BW (2004) Mater Today 7:44CrossRefGoogle Scholar
  5. 5.
    Fan JP, Zhao DQ, Wu MS, Xu ZN, Song J (2006) J Am Ceram Soc 89:750CrossRefGoogle Scholar
  6. 6.
    Ning JW, Zhang JJ, Pan YB, Guo JK (2004) Ceram Int 30:63CrossRefGoogle Scholar
  7. 7.
    Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu JM (2004) Acta Mater 52:931CrossRefGoogle Scholar
  8. 8.
    Rul S, Lefevre-Schlick F, Capria E, Laurent C, Peigney A (2004) Acta Mater 52:1061CrossRefGoogle Scholar
  9. 9.
    Zhan G-D, Mukherjee AK (2004) Int J Appl Ceram Technol 1:161CrossRefGoogle Scholar
  10. 10.
    Zhan G-D, Kuntz JD, Garay JE, Mukherjee AK (2003) Appl Phys Lett 83:1228CrossRefGoogle Scholar
  11. 11.
    Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A (2002) Chem Phys Lett 352:20CrossRefGoogle Scholar
  12. 12.
    Fan J, Zhao D, Wu M, Xu Z, Song J (2006) J Am Ceram Soc 89:750CrossRefGoogle Scholar
  13. 13.
    Siegel RW, Chang SK, Ash BJ, Stone J, Ajayan PM, Doremus RW, Schadler LS (2001) Scripta Mater 44:2061CrossRefGoogle Scholar
  14. 14.
    Koch D, Andresen L, Schmedders T, Grathwohl G (2003) J Sol-Gel Sci Tech 26:149CrossRefGoogle Scholar
  15. 15.
    Jones RW (2000) Ind Ceram 20:117Google Scholar
  16. 16.
    Bollman H (1957) Ceram Age 791:36Google Scholar
  17. 17.
    Novich BE, Sundback CA, Adams RW, (1992) In: Cima MJ (ed) Ceramic transactions, forming science and technology for ceramics, American Ceramic Society, Westerville, p 157Google Scholar
  18. 18.
    Koh Y-H, Song J-H, Lee E-J, Kim H-E (2006) J Am Ceram Soc 89:3089CrossRefGoogle Scholar
  19. 19.
    Sofie SW, Dogan F (2001) J Am Ceram Soc 84:1459CrossRefGoogle Scholar
  20. 20.
    Rak ZS (2000) CFI-Ceram Forum Int 77:E25Google Scholar
  21. 21.
    Lu K, Kessler CS, Davis RM (2006) J Am Ceram Soc 89:2459CrossRefGoogle Scholar
  22. 22.
    Lu K, J Am Ceram Soc, in printGoogle Scholar
  23. 23.
    Lu K (2006) In: Mathur S, Laine RM, Hu MZ, Vartuli J, Koper OB (eds) Proceeding of 2006 Materials Science & Technology International Conference, American Ceramic Society, Cincinnati, p 463Google Scholar
  24. 24.
    Lu K (2007) Powder Technol 177:154CrossRefGoogle Scholar
  25. 25.
    Sun J, Gao L (2003) Carbon 41:1063CrossRefGoogle Scholar
  26. 26.
    Sun J, Gao L, Jin XH (2005) Ceram Int 31:893CrossRefGoogle Scholar
  27. 27.
    Cesarano J, Aksay IA (1988) J Am Ceram Soc 71:1062CrossRefGoogle Scholar
  28. 28.
    ASTM Designation C1499–04 (2004) American Society for Testing and Materials International, West ConshockenGoogle Scholar
  29. 29.
    Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H (1996) Carbon 34:279CrossRefGoogle Scholar
  30. 30.
    Lu K, Kessler CS (2006) J Mater Sci 41:5613, doi:  10.10007/s10853-006-0303-05
  31. 31.
    Lu K, Ceram Int, in printGoogle Scholar
  32. 32.
    Jiang LQ, Gao L, Sun J (2003) J Colloid Interf Sci 260:89CrossRefGoogle Scholar
  33. 33.
    Mohamed A, Mahfoodh ASM (2006) Colloids Surf A 287:44CrossRefGoogle Scholar
  34. 34.
    Singh G, Song LF (2006) Colloids Surf A 281:138CrossRefGoogle Scholar
  35. 35.
    Soltesz U, Richter H, Kienzler R (1987) In: Vincenzini P (ed) High technological ceramics, Elsevier, Amsterdam, p 149Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations