Advertisement

Journal of Materials Science

, Volume 43, Issue 4, pp 1292–1304 | Cite as

Microstructural evolution in semi-solid AA7034

  • Hee-Soo Kim
  • Ian C. StoneEmail author
  • Brian Cantor
Article

Abstract

The kinetics of semi-solid grain coarsening in a spray-formed AA7034 aluminium alloy were determined by the use of ex situ coarsening experiments. The coarsening rate constant of the alloy decreases with increasing solid fraction for solid fractions greater than 0.65. For solid fractions between 0.6 and 0.65, the coarsening rate constant increases as the solid fraction increases. For solid fractions below 0.6, the coarsening rate constant decreases again with increasing solid fraction. A model of flow-enhanced diffusion was developed to explain the grain-coarsening behaviour at low solid fractions, with flow caused by the macroscopic shape change of the uncontained semi-solid material during coarsening. Together with previous liquid film and modified liquid film migration models, the flow-enhanced diffusion model shows qualitative agreement with available experimental results.

Keywords

Liquid Film Solid Fraction AA7034 Alloy Heat Treatment Time Convective Mass Transfer 

References

  1. 1.
    Flemings MC (1991) Metall Trans A 22:957CrossRefGoogle Scholar
  2. 2.
    Kirkwood DH (1994) Int Mater Rev 39:173CrossRefGoogle Scholar
  3. 3.
    Han DS (2000) DPhil Thesis. University of OxfordGoogle Scholar
  4. 4.
    Grant PS (1995) Prog Mater Sci 39:497CrossRefGoogle Scholar
  5. 5.
    Mathur P, Apelian D, Lawley A (1989) Acta Metall 37:429CrossRefGoogle Scholar
  6. 6.
    Mathur P, Annavarapu S, Apelian D, Lawley A (1991) Mater Sci Eng A 142:261CrossRefGoogle Scholar
  7. 7.
    Grant PS, Underhill RP, Kim WT, Mingard KP, Cantor B (1993) ICSF 2:45Google Scholar
  8. 8.
    Annavarapu S, Doherty RD (1995) Acta Metall Mater 43:3207CrossRefGoogle Scholar
  9. 9.
    Pedneau N, Pekguleryuz MO (1997) Scripta Mater 37:903CrossRefGoogle Scholar
  10. 10.
    Wolfsdorf TL, Bender WH, Voorhees PW (1997) Acta Mater 45:2279CrossRefGoogle Scholar
  11. 11.
    Manson-Whitton ED, Stone IC, Jones JR, Grant PS, Cantor B (2002) Acta Mater 50:2517CrossRefGoogle Scholar
  12. 12.
    Kim HS (2003) DPhil Thesis. University of OxfordGoogle Scholar
  13. 13.
    Underhill RP, Grant PS, Bryant DJ, Cantor B (1995) J Mater Synth Process 3:171Google Scholar
  14. 14.
    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35CrossRefGoogle Scholar
  15. 15.
    Wagner C (1961) Z Elektrochem 65:581Google Scholar
  16. 16.
    CRC handbook of chemistry and physics (2004) Website, CRC Press. https://doi.org/www.hbcpnetbase.com Accessed 15 November 2007
  17. 17.
    Joly PA, Mehrabian R (1976) J Mater Sci 11:1393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.CAE_G, Central R&D InstituteSamsung Electro-MechanicsSuwonKorea
  3. 3.University of YorkHeslington, YorkUK

Personalised recommendations