Journal of Materials Science

, Volume 43, Issue 12, pp 4042–4049 | Cite as

Processing and magnetic properties of metal-containing SiCN ceramic micro- and nano-composites

  • Ralf Hauser
  • Adel FrancisEmail author
  • Ralf Theismann
  • Ralf Riedel
Rees Rawlings Festschrift


Owing to their excellent high temperature and oxidation resistance, non-oxide polymer-derived silicon-based ceramics are suitable for applications in hot and corrosive environments. The metal (Fe, Co)-containing pre-ceramic compounds combine the processability of organic polymers with the physical and chemical characteristics of the metallic component. In this study, we will introduce two different routes to embed metal particles in a SiCN ceramic matrix, derived from the commercially available polysilazane Ceraset®. (1). Mixing and milling of metal powders (Fe, Co) with pre-crosslinked polysilazane followed by pyrolysis at 1100 °C. (2). Chemical reaction between metal carbonyl compounds, namely Fe(CO)5 and Co2(CO)8, with pure polyorganosilazane followed by pyrolysis at 1100 °C. Both synthetic routes will be discussed on two particular examples, iron- and cobalt-containing samples as well as their resulting different microstructures with respect to their magnetic properties. The phases and microstructures of the metal–SiCN composites were investigated in terms of X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with EDX, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetometer. Upon annealing in argon at 1100 °C, the crosslinked polysilazane blended with iron powder possesses a high saturation magnetization of about ∼57 emu/g and exhibits good ferromagnetic behaviour in comparison to the one blended with cobalt. The magnetic measurements were performed within the temperature range 65–300 K.


Iron Powder Iron Carbonyl Fe3Si Soft Magnetic Property Metal Carbonyl 



A. F., who spent 2 months at the Technische Universität Darmstadt (TUD) under the sponsorship of the DAAD fellowship programme, acknowledges the support of the DAAD. Furthermore, A. F. is grateful to the Alexander von Humboldt Foundation for the Georg-Forster research fellowship. R.R. extends his gratitude for the financial support of the Fonds der Chemischen Industrie, Frankfurt, Germany.


  1. 1.
    Riedel R, Kienzle A, Friess M (1995) In: Harrod JF, Laine RM (eds) Applications of organo-metallic chemistry in the preparation and processing of advanced materials. Kluwer Academic Publishers, The Netherlands, pp 155CrossRefGoogle Scholar
  2. 2.
    Bill J, Aldinger F (1995) Adv Mater 7(9):775CrossRefGoogle Scholar
  3. 3.
    Seyferth D (1991) In: Ziegler G, Hausner H (eds) Euro-ceramics 2: vol. 1, The proceedings of the second European ceramic society conference (Ecers ‘91). FRGDeutsche Keramishe Gesellscheft e.V.: Augsburg, p 567Google Scholar
  4. 4.
    Narula CK (1995) Ceramic precursor technology and its applications. Marcel Dekker Inc., USA, pp 83Google Scholar
  5. 5.
    Liew L, Zhang W, An L, Shah S, Luo R, Lui Y, Dunn ML, Bright V, Raj R, Anseth K (2001) Am Cer Soc Bull 80(5):25Google Scholar
  6. 6.
    An L, Riedel R, Konetschny C, Kleebe H-J, Raj R (1998) J Am Ceram Soc 81:1349CrossRefGoogle Scholar
  7. 7.
    An L, Wang Y, Bharadwaj L, Fan Y, Zhang L, Jiang D, Sohn Y, Desai VH, Kapat J, Chow LC (2004) Adv Eng Mat 6(5):337CrossRefGoogle Scholar
  8. 8.
    Raj R, An L, Shah S, Riedel R, Fasel C, Kleebe H-J (2001) J Am Ceram Soc 84(8):1803CrossRefGoogle Scholar
  9. 9.
    Iwamoto Y, Völger W, Kroke E, Riedel R (2001) J Am Ceram Soc 84(10):2170CrossRefGoogle Scholar
  10. 10.
    Riedel R, Kienzle A, Dreßler W, Ruwisch L, Bill J, Aldinger F (1996) Nature 382:796CrossRefGoogle Scholar
  11. 11.
    Haluschka C, Engel C, Riedel R (2000) J Eur Ceram Soc 20:1365CrossRefGoogle Scholar
  12. 12.
    Greil P (1998) J Eur Ceram Soc 18(13):1905CrossRefGoogle Scholar
  13. 13.
    Tsirlin AM, Shcherbakova GI, Florina EK, Popova NA, Gubin SP, Moroz EM, Riedel R, Kroke E, Steen M (2002) J Eur Ceram Soc 22:2577CrossRefGoogle Scholar
  14. 14.
    Nishi N, Kosugi K, Hino K, Yokoya T, Okunishi E (2003) Chem Phys Lett 369:198CrossRefGoogle Scholar
  15. 15.
    Kulbaba K, Resendes R, Cheng A, Bartole A, Safa-Sefat A, Coombs N, Stover HDH, Greedan JE, Ozin G, Manners I (2001) Adv Mater 13:732CrossRefGoogle Scholar
  16. 16.
    Saha A, Shah SR, Raj R, Russek SE (2003) J Mater Res 18(11):2549CrossRefGoogle Scholar
  17. 17.
    Yan X, Cheng X, Li C, Hauser R, Riedel R (2007) Mat Sci Forum 546–549:2269CrossRefGoogle Scholar
  18. 18.
    MacLachlan M, Ginzburg M, l Coombs N, Coyle TW, Raju NP, Greedan JE, Ozin GA, Manners I (2000) Science 287:1460CrossRefGoogle Scholar
  19. 19.
    Riedel R, Mera G, Hauser R, Klonczynski A (2006) J Ceram Soc Japan 114(6):425CrossRefGoogle Scholar
  20. 20.
    Greil P (1995) J Am Ceram Soc 78:835CrossRefGoogle Scholar
  21. 21.
    Roisnel T, Rodrigues-Carvajal J (2001) Mat Sci Forum 378:118CrossRefGoogle Scholar
  22. 22.
    (a) Keeley DF, Johnson RE (1959) J Inorg Nucl Chem 11:33 (b) King RB, Stone FGA (1963) Inorg Synt 7:193Google Scholar
  23. 23.
    Corriu RJP, Devylder N, Guerin C, Henner B, Jean A (1996) J Organomet Chem 509:249CrossRefGoogle Scholar
  24. 24.
    Bourg S, Boury B, Corriu RJP (1998) J Mater Chem 8(4):1001CrossRefGoogle Scholar
  25. 25.
    Li Y-L, Kroke E, Riedel R, Fasel C, Gervais C, Babonneau F (2001) Appl Organomet Chem 15:820CrossRefGoogle Scholar
  26. 26.
    Riedel R, Passing G, Schönfelder H, Brook RJ (1992) Nature 355:714CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ralf Hauser
    • 1
  • Adel Francis
    • 2
    Email author
  • Ralf Theismann
    • 1
    • 3
  • Ralf Riedel
    • 1
  1. 1.Darmstadt University of TechnologyInstitute of Materials ScienceDarmstadtGermany
  2. 2.Central Metallurgical Research and Development Institute (CMRDI)CairoEgypt
  3. 3.Institute of Nanotechnology, Forschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations