Advertisement

Journal of Materials Science

, Volume 43, Issue 9, pp 2978–2989 | Cite as

Effect of platinum on the oxide-to-metal adhesion in thermal barrier coating systems

  • H. M. TawancyEmail author
  • A. UI-Hamid
  • N. M. Abbas
  • M. O. Aboelfotoh
Interface Science

Abstract

An investigation was conducted to determine the role of Pt in a thermal barrier coating system deposited on a nickel-base superalloy. Three coating systems were included in the study using a layer of yttria-stabilized zirconia as a model top coat, and simple aluminide, Pt-aluminide, and Pt bond coats. Thermal exposure tests at 1,150 °C with a 24-h cycling period to room temperature were used to compare the coating performance. Additional exposure tests at 1,000, 1,050, and 1,100 °C were conducted to study the kinetics of interdiffusion. Microstructural features were characterized by scanning electron microscopy and transmission electron microscopy combined with energy dispersive X-ray spectroscopy as well as X-ray diffraction. Wavelength dispersive spectroscopy was also used to qualitatively distinguish among various refractory transition metals. Particular emphasis was placed upon: (i) thermal stability of the bond coats, (ii) thickening rate of the thermally grown oxide, and (iii) failure mechanism of the coating. Experimental results indicated that Pt acts as a “cleanser” of the oxide-bond coat interface by decelerating the kinetics of interdiffusion between the bond coat and superalloy substrate. This was found to promote selective oxidation of Al resulting in a purer Al2O3 scale of a slower growth rate increasing its effectiveness as “glue” holding the ceramic top coat to the underlying metallic substrate. However, the exact effect of Pt was found to be a function of the state of its presence within the outermost coating layer. Among the bond coats included in the study, a surface layer of Pt-rich γ′-phase (L12 superlattice) was found to provide longer coating life in comparison with a mixture of PtAl2 and β-phase.

Keywords

Bond Coat Thermal Barrier Coating Al2O3 Scale Interdiffusion Zone Thermal Barrier Coating System 

References

  1. 1.
    Pomeroy MJ (2005) Mater Des 26(3):223CrossRefGoogle Scholar
  2. 2.
    Padture NP, Gell M, Jordan EH (2002) Science 296(5566):280CrossRefGoogle Scholar
  3. 3.
    DeMasi-Marcin JT, Gupta DK (1994) Surf Coat Technol 68/69:1CrossRefGoogle Scholar
  4. 4.
    Sims CT (1991) Adv Mater Processes 139(6):32Google Scholar
  5. 5.
    Tolpygo V, Clark DR (2005) Surf Coat Technol 200(5–6):1276CrossRefGoogle Scholar
  6. 6.
    Tawancy HM, Mohamed AI, Abbas NM, Jones RE, Rickerby DS (2003) J Mater Sci 38:3797CrossRefGoogle Scholar
  7. 7.
    Guerre C, Remy L, Molins R (2003) Mater High Temp 20(4):481CrossRefGoogle Scholar
  8. 8.
    Yanar NM, Kim G, Hamano S, Pettit FS, Meier GH (2003) Mater High Temp 20(4):495CrossRefGoogle Scholar
  9. 9.
    Mumm DR, Evans AG, Spitsberg IT (2001) Acta Mater 49(12):2329CrossRefGoogle Scholar
  10. 10.
    Tawancy HM, Sridhar N, Abbas NM, Rickerby DS (2000) J Mater Sci 35:3615CrossRefGoogle Scholar
  11. 11.
    Gell M, Vaidyanathan K, Barber B, Cheng J, Jordan E (1999) Metall Mater Trans A Phys Metall Mater Sci 30(2):427CrossRefGoogle Scholar
  12. 12.
    Tawancy HM, Sridhar N, Abbas NM, Rickerby DS (1998) J Mater Sci 33:681CrossRefGoogle Scholar
  13. 13.
    Dietl U (1994) Surf Coat Technol 68/69:17CrossRefGoogle Scholar
  14. 14.
    Sun JH, Chang E, Chao CH, Cheng M (1993) Oxid Met 40(5/6):465CrossRefGoogle Scholar
  15. 15.
    Meier SM, Nissley DM, Sheffler KD, Cruse TA (1992) Trans ASME 114:258Google Scholar
  16. 16.
    Lih W, Chang E, Wu BC, Chao CH (1991) Oxid Met 36(3/4):221Google Scholar
  17. 17.
    Millerc RM (1989) J Eng Gas Turbines Power 111:301CrossRefGoogle Scholar
  18. 18.
    Panat R, Hsia KJ, Oldham J (2005) Phil Mag 85(1):45CrossRefGoogle Scholar
  19. 19.
    Panat R, Hsia KJ (2004) Proc Royal Soc of London Series A Math Phys Eng Sci 460(2047):1957CrossRefGoogle Scholar
  20. 20.
    Tolpygo VK, Clarke DR (2004) Acta Mater 52(17):5115Google Scholar
  21. 21.
    Panat R, Hsia KJ, Cahill DG (2005) J Appl Phys 97(1):art. no. 013521Google Scholar
  22. 22.
    Pint BA (2004) Surf Coat Technol 188:71CrossRefGoogle Scholar
  23. 23.
    Tawancy HM, Abbas NM, Rhys-Jones TN (1991) Surf Coat Technol 49:1CrossRefGoogle Scholar
  24. 24.
    Schaeffer J, White WE, Vandervoort GF (1989) In: Lang E (ed) The role of active elements in the oxidation behavior of metals and alloys. Elsevier Applied Sciences, London, New York, p 231Google Scholar
  25. 25.
    Jackson MR, Rairden JR (1977) Metall Trans A8:1697CrossRefGoogle Scholar
  26. 26.
    Patnaik PC (1989) Mater Manuf Processes 4(1):133CrossRefGoogle Scholar
  27. 27.
    Goward GW, Cannon LW (1988) Trans ASME 110(1):150Google Scholar
  28. 28.
    Smith JS, Boone DH (1990) Gas turbine and aeroengine congress and exposition, Brussels, Belgium, June 1990, ASME Paper Ni. 90-GT-319Google Scholar
  29. 29.
    Goodhew PJ (1984) Specimen preparation for transmission electron microscopy. Oxford University Press, Oxford, p 26Google Scholar
  30. 30.
    Goward GW, Boone DH (1971) Oxid Met 3(5):475CrossRefGoogle Scholar
  31. 31.
    Goward GW (1970) J Met 22(10):31Google Scholar
  32. 32.
    Wood JH, Goldman EH (1987) In Sims CT, Stoloff NS, Hagel WC (eds) Superalloys II. Wiley Interscience, p 359Google Scholar
  33. 33.
    Giggins CS, Pettit FS (1971) J Electrochem Soc 118:1782CrossRefGoogle Scholar
  34. 34.
    Fleetwood MJ (1970) J Inst Met 98:1Google Scholar
  35. 35.
    Hayashi S, Ford SI, Young DJ, Sordelet DJ, Besser MF, Gleeson B (2005) Acta Mater 53(11):3319CrossRefGoogle Scholar
  36. 36.
    Levy M, Farrell P, Petit FS (1986) Corrosion 42(12):717CrossRefGoogle Scholar
  37. 37.
    Anton DL, Shah DM, Duhl DN, Giamei FA (1989) J Met 41(9):12Google Scholar
  38. 38.
    Lih W, Chang E, Wu BC, Chao CH (1991) Oxid Met 36(3/4):221Google Scholar
  39. 39.
    Wu BC, Chao CH, Chang E (1990) Mater Sci Eng A124:215CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • H. M. Tawancy
    • 1
    Email author
  • A. UI-Hamid
    • 1
  • N. M. Abbas
    • 1
  • M. O. Aboelfotoh
    • 2
  1. 1.Center for Engineering ResearchKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia
  2. 2.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations