Journal of Materials Science

, Volume 42, Issue 24, pp 10164–10172 | Cite as

Voltammetric and chronoamperometric studies of silver electrodeposition from a bath containing HEDTA

  • G. M. de Oliveira
  • M. R. Silva
  • Ivani Aparecida CarlosEmail author


The electrodeposition of silver on platinum from ammonium-buffered solutions containing HEDTA (N-(2-hydroxyethyl)ethylenediaminetriacetic acid) at various concentrations was investigated. Potentiometric titration and voltammetric studies indicated that in the presence of 2.0 × 10−1 M HEDTA, the deposited silver was reduced from a mixture of [AgHEDTA]2− and [Ag(NH3)2]+ complexes, whereas at 2.0 × 10−2 M and 2.0 × 10−3 M HEDTA in the electrolyte, the silver was reduced from the [Ag(NH3)2]+ complexes alone. Hydrodynamic studies showed variation in the diffusion coefficient for the electroactive species in solution, depending on the HEDTA concentration. Chronoamperometric study in a solution containing 2.0 × 10−1 M HEDTA at low overpotential (0.000 V to –0.050 V) showed a transition from progressive to instantaneous nucleation in a single current transient, whereas, at −0.200 V only 3D-progressive nucleation controlled by mass transport was observed. Scanning electron microscope images showed that the silver films produced in silver baths with HEDTA were uniform, without cracks, and fine-grained, regardless of its concentration, while in the absence of HEDTA the morphology was rough and dendritic. X-ray diffraction analysis of the films obtained at various HEDTA concentrations revealed polycrystalline silver, similar to film obtained in cyanide and EDTA/ammonia baths.


Hydrogen Evolution Reaction Current Transient Silver Film Silver Deposition Voltammetric Curve 



Financial support from Brazilian agencies FAPESP (Proc. no. 02/10772-6 and 04/06413-6) and CAPES is gratefully acknowledged.


  1. 1.
    Bochkarev VA, Napukh ÉZ (1982) Soviet Electrochem 18:752Google Scholar
  2. 2.
    Gunawardena G, Hills G, Montegro I (1982) J Electroanal Chem 138:241CrossRefGoogle Scholar
  3. 3.
    Papanastasiou G, Jannakoudakis D, Amblard J, Froment M (1985) J Appl Electrochem 15:71CrossRefGoogle Scholar
  4. 4.
    Kristev I, Nikolova M (1986) J Appl Electrochem 16:703CrossRefGoogle Scholar
  5. 5.
    Krishnan RM, Sriveeraraghavan S, Natarajan SR (1986) Bullet Electrochem 2(3):257Google Scholar
  6. 6.
    Michailova E, Milchev A (1991) J Appl Electrochem 21:170CrossRefGoogle Scholar
  7. 7.
    Palomar-Pardavé M, Ramírez MT, González I, Serruya A, Scharifker BR (1996) J Electrochem Soc 143(5):1551CrossRefGoogle Scholar
  8. 8.
    Miranda-Hernández M, González I (1997) Electrochim Acta 42(150):2295CrossRefGoogle Scholar
  9. 9.
    Miranda-Hernández M, Palomar-Pardavé M, Batina N, González I (1998) J Electroanal Chem 443:81CrossRefGoogle Scholar
  10. 10.
    Miranda-Hernández M, Palomar-Pardavé M, Batina N, González I (1998) Surf Sci 399:80CrossRefGoogle Scholar
  11. 11.
    Reents B, Plieth W, Macagno VA, Lacconi GI (1998) J Electroanal Chem 453:121CrossRefGoogle Scholar
  12. 12.
    Azzaroni O, Schilardi PL, Salvarezza RC, Arvia AJ (1999) Langmuir 15:1508CrossRefGoogle Scholar
  13. 13.
    Fourcade F, Tzedakis T (2000) J Electroanal Chem 493:20CrossRefGoogle Scholar
  14. 14.
    Krastev I, Zielonka A, Nakabayashi S, Inokuma K (2001) J Appl Electrochem 31:1041CrossRefGoogle Scholar
  15. 15.
    de Oliveira GM, Barbosa LL, Broggi RL, Carlos IA (2005) J Electroanal Chem 578:151CrossRefGoogle Scholar
  16. 16.
    Zarkadas GM, Stergiou A, Papanastasiou G (2005) Electrochim Acta 50:5022CrossRefGoogle Scholar
  17. 17.
    Tulio PC (1996) Ph.D. Thesis, Universidade Federal de São Carlos, BrasilGoogle Scholar
  18. 18.
    Goldstein JI, Roming AD Jr, Newbury DE, Lyman CE, Echlin P, Fiori C, Joy DC, Lifshin E (1992) Scanning electron microscopy and X-ray microanlysis: a text for biologists, materials scientists, and geologists, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  19. 19.
    Carlos IA, Carlos RM, Caruso CS (1997) J Power Sources 69:37CrossRefGoogle Scholar
  20. 20.
    Carlos IA, Souza CAC, Pallone EMJA, Francisco RHP, Cardoso V, Lima-Neto BS (2000) J Appl Electrochem 30:987CrossRefGoogle Scholar
  21. 21.
    Carlos IA, Malaquias MA, Oizumi MM, Matsuo TT (2001) J Power Sources 92:56CrossRefGoogle Scholar
  22. 22.
    de Almeida MRH, Carlos IA, Barbosa LL, Carlos RM, Lima-Neto BS, Pallone EMJA (2002) J Appl Electrochem 32:763CrossRefGoogle Scholar
  23. 23.
    Carlos IA, Siquiera JLP, Finazzi GA, Almeida MRH (2003) J Power Sources 117:179CrossRefGoogle Scholar
  24. 24.
    Carlos IA, de Almeida MRH (2004) J Electroanal Chem 562:153CrossRefGoogle Scholar
  25. 25.
    Broggi RL, de Oliveira GM, Barbosa LL, Pallone EMJA, Carlos IA (2006) J Appl Electrochem 36:403CrossRefGoogle Scholar
  26. 26.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice-Hall, Inc., LondonGoogle Scholar
  27. 27.
    Kotrlý A, Šůcha L (1985) Handbook of chemical equilibria in analytical chemistry. John Wiley & Sons, New YorkGoogle Scholar
  28. 28.
    Starovoytov ON, Kim NS, Han KN (2007) Hydrometallurgy 86:114CrossRefGoogle Scholar
  29. 29.
    Fletcher S (1983) Electrochim Acta 28(70):971Google Scholar
  30. 30.
    Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) J Electroanal Chem 159:267CrossRefGoogle Scholar
  31. 31.
    Scharifker BR, Hills G (1983) Electrochim Acta 28(7):879CrossRefGoogle Scholar
  32. 32.
    Joint Committee on Powder Diffraction Standards (JCPDS), In: International Centre for Diffraction Data. Powder Diffraction File PDF-2. Database Set 1–49. Pennsylvania, ICDD, (2000) CD-ROMGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. M. de Oliveira
    • 1
  • M. R. Silva
    • 1
  • Ivani Aparecida Carlos
    • 1
    Email author
  1. 1.Departamento de QuímicaUniversidade Federal de São CarlosSao CarlosBrazil

Personalised recommendations