Journal of Materials Science

, Volume 42, Issue 24, pp 10138–10142 | Cite as

Sodium silicate bonded borate glass scaffolds for tissue engineering

  • Wen LiangEmail author
  • Meng Wang
  • Delbert E. Day
  • Christian Rüssel


Borate and silicate glass particles and microspheres with size distributions in the range of approximately 100–400 micron were loosely compacted and bonded by sodium silicate solution to prepare resorbable, porous glass constructs with porosity 30–50%. Conversion of the binding borate glass to hydroxyapatite was investigated by measuring the weight loss of the constructs in a solution of 0.25 M K2HPO4 with a pH value of 9.0 at 37 °C, as a function of time. Almost full conversion of the borate glass to hydroxyapatite was achieved in less than 6 days. X-ray diffraction revealed an initially amorphous product that subsequently crystallized to hydroxyapatite.


Hydroxyapatite B2O3 Calcium Phosphate Sodium Silicate Bioactive Glass 



This project is financially sponsored by Shanghai Pujiang Programme. The authors wish to acknowledge the valuable discussion with Prof. D E Day in the Materials Research Center, University of Missouri-Rolla.


  1. 1.
    Li W-J, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) Biomaterials 26:599CrossRefGoogle Scholar
  2. 2.
    Vacanti JP, Langer R (1999) The Lancet 354(Suppl. 1):32CrossRefGoogle Scholar
  3. 3.
    Stock UA, Vacanti JP (2001) Annu Rev Med 52:443CrossRefGoogle Scholar
  4. 4.
    Kneser U, Schaefer DJ, Munder B, Klemt C, Andree C, Stark GB (2002) Min Invas Ther Alllied Technol 11:107CrossRefGoogle Scholar
  5. 5.
    Vats A, Tolley NS, Polak JM, Gough JE (2003) Clin Otolaryngol 28:165CrossRefGoogle Scholar
  6. 6.
    Lichtenberg A, Dumlu G, Walles T, Maringka M, Ringes-Lichtenberg S, Ruhparwar A, Mertsching H, Haverich A (2005) Biomaterials 26:555CrossRefGoogle Scholar
  7. 7.
    Goldstein SA, Patil PV, Moalli MR (1999) Clin Orthop 357S:S419CrossRefGoogle Scholar
  8. 8.
    Yoon JJ, Park TG (2001) J Biomed Mater Res 55:401CrossRefGoogle Scholar
  9. 9.
    Silver IA, Deas J, Erecińska M (2001) Biomaterials 22:175CrossRefGoogle Scholar
  10. 10.
    Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA (2005) Biomaterials 26:137CrossRefGoogle Scholar
  11. 11.
    Hench LL (1991) J Am Ceram Soc 74:1487CrossRefGoogle Scholar
  12. 12.
    Hench LL, Splinter RJ, Allen WC, Greenlee TJ Jr (1971) J Biomed Mater Res 2:117CrossRefGoogle Scholar
  13. 13.
    Bosetti M, Zanardi L, Hench LL, Cannas M (2003) J Biomed Mater Res 64A:189CrossRefGoogle Scholar
  14. 14.
    Ramay HR, Zhang M (2003) Biomaterials 24:3293CrossRefGoogle Scholar
  15. 15.
    Boyan BD, Niederauer G, Kieswetter K, Leatherbury NC, Greenspan DC (1999) US Patent No. 5977204Google Scholar
  16. 16.
    Conzone SD, Brown RF, Day DE, Ehrhardt GJ (2002) J Biomed Mater Res 60:260CrossRefGoogle Scholar
  17. 17.
    Day DE, White JE, Brown RF, McMenamin KD (2003) Glass Technol 44:75Google Scholar
  18. 18.
    Marion NW, Liang W, Reilly G, Day DE, Rahaman MN, Mao JJ (2005) Mech Adv Mater Struct (MAMS) 12(3):239CrossRefGoogle Scholar
  19. 19.
    Rahaman MN, Liang W, Day DE, Marion NW, Reilly G, Mao JJ (2005) Adv Bioceram Biocomposites 26(6). A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites 2005, pp 3–10Google Scholar
  20. 20.
    Liang W, Rűssel C, Day DE (2006) J Mater Res 21(1):125CrossRefGoogle Scholar
  21. 21.
    Liang W, Rűssel C (2006) J Mater Sci 41:3787CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Wen Liang
    • 1
    Email author
  • Meng Wang
    • 1
  • Delbert E. Day
    • 2
  • Christian Rüssel
    • 3
  1. 1.Research Institute of BiomaterialsEast China University of Science and TechnologyShanghaiChina
  2. 2.Materials Research CenterUniversity of Missouri-RollaRollaUSA
  3. 3.Otto-Schott-InstitutUniversität JenaJenaGermany

Personalised recommendations