Journal of Materials Science

, Volume 42, Issue 24, pp 10152–10159 | Cite as

Mixed conducting oxides YxZr1−xyTiyO2−x/2 (YZT) and corresponding Ni/YZT cermets as anode materials in an SOFC

  • X. Mantzouris
  • N. Zouvelou
  • V. A. C. Haanappel
  • F. TietzEmail author
  • P. Nikolopoulos


The physical properties of mixed-conducting oxides in the ternary system Y2O3–ZrO2–TiO2 with the general formula YxZr1−xyTiyO2−x/2 (YZT, where 0.133 < x < 0.25 and 0 < y < 0.15) are presented and evaluated in terms of an application as anode materials in solid oxide fuel cells (SOFCs). The total electrical conductivity of the ceramics with cubic fluorite structure in air mainly depends on the Ti content and decreases at 900 °C by about one order of magnitude from y = 0 to y = 0.15. Comparing the conductivity of contributions at 900 °C in Ar/4% H2 the highest contributions of electronic conductivity were obtained for y = 0.15. For the Ni/YZT cermets, the enhanced adherence at the metal/ceramic interface, compared to Ni/8YSZ (8 mol% yttria stabilised zirconia), results in a better long-term stability in terms of electrical conductivity and microstructure after 1,000 h of annealing at 1,000 °C in reducing atmosphere. The electrochemical performance, tested in fuel cells with Ni/8YSZ, Ni/Y0.20Zr0.75Ti0.05O1.9 and Ni/Y0.20Zr0.70Ti0.10O1.9 anodes, decreased for Ni/Y0.20Zr0.70Ti0.10O1.9 under steam reforming conditions, most likely due to the reduced ionic conductivity of this specific YZT ceramic.


Ceramic Phase Percolation Limit Total Electrical Conductivity Anode Substrate Y2O3 Content 



Financial support is gratefully acknowledged from the Greek-German (GRC 01/099) bilateral co-operation project and from the E.U. Integrated Project REALSOFC (No. SES6-CT-2003–50261). The authors thank the colleagues at IEF—S. Heinz, V. Bader, G. Blaß, W. Herzhof, C. Tropartz—for technical assistance and M. Michulitz (FZJ-ZCH) for chemical analysis with ICP-OES.


  1. 1.
    Liou SS, Worrell WL (1989) Appl Phys A 49:25CrossRefGoogle Scholar
  2. 2.
    Naito H, Arashi H (1992) Solid State Ionics 53–56:436CrossRefGoogle Scholar
  3. 3.
    Colomer MT, Traqueia LSM, Jurado JR, Marques FMB (1995) Mater Res Bull 30:515CrossRefGoogle Scholar
  4. 4.
    Rog G, Borchardt G (1996) Ceram Int 22:149CrossRefGoogle Scholar
  5. 5.
    Swider KE, Worrell WL (1996) J Electrochem Soc 143:3706CrossRefGoogle Scholar
  6. 6.
    Traqueia LSM, Pagnier T, Marques FMB (1997) J Eur Ceram Soc 17:1019CrossRefGoogle Scholar
  7. 7.
    Kobayashi K, Kai Y, Yamaguchi S, Fukatsu N, Kawashima T, Iguchi Y (1997) Solid State Ionics 93:193CrossRefGoogle Scholar
  8. 8.
    Kaiser A, Feighery AJ, Fagg DP, Irvine JTS (1998) Ionics 4:215CrossRefGoogle Scholar
  9. 9.
    Capel F, Moure C, Duran P, Gonzalez-Elipe AR, Caballero A (2000) J Mater Sci 35:345CrossRefGoogle Scholar
  10. 10.
    Hui S, Petric A (2002) J Eur Ceram Soc 22:1673CrossRefGoogle Scholar
  11. 11.
    Pudmich G, Boukamp BA, Gonzalez-Cuenca M, Jungen W, Zipprich W, Tietz F (2000) Solid State Ionics 135:433CrossRefGoogle Scholar
  12. 12.
    Primdahl S, Mogensen M (2002) Solid State Ionics 152–153:597CrossRefGoogle Scholar
  13. 13.
    Skarmoutsos D, Tsoga A, Naoumidis A, Nikolopoulos P (2000) Solid State Ionics 135:439CrossRefGoogle Scholar
  14. 14.
    Ruiz-Morales JC, Nunez P, Buchanan R, Irvine JTS (2003) J Electrochem Soc 150:A1030CrossRefGoogle Scholar
  15. 15.
    Skarmoutsos D, Nikolopoulos P, Tietz F, Vinke IC (2004) Solid State Ionics 170:153CrossRefGoogle Scholar
  16. 16.
    Laguna-Bercero MA, Larrea A, Peňa JI, Merino RI, Orera VM (2005) J Eur Ceram Soc 25:1455CrossRefGoogle Scholar
  17. 17.
    Skarmoutsos D, Tietz F, Nikolopoulos P (2001) Fuel Cells 1:243CrossRefGoogle Scholar
  18. 18.
    Mantzouris X, Zouvelou N, Skarmoutsos D, Nikolopoulos P, Tietz F (2005) J Mater Sci 40:2471CrossRefGoogle Scholar
  19. 19.
    Tsoga A, Naoumidis A, Nikolopoulos P (1996) Acta Mater 44:3679CrossRefGoogle Scholar
  20. 20.
    Colomer MT, Duran P, Caballero A, Jurado JR (1997) Mat Sci Eng A 229:114CrossRefGoogle Scholar
  21. 21.
    Feighery AJ, Irvine JTS, Fagg DP, Kaiser A (1999) J Solid State Chem 143:273CrossRefGoogle Scholar
  22. 22.
    Tietz F, Jungen W, Lersch P, Figaj H, Becker KD, Skarmoutsos D (2002) Chem Mater 14:2252CrossRefGoogle Scholar
  23. 23.
    Kountouros P, Förthmann R, Naoumidis A, Stochniol G, Syskakis E (1995) Ionics 1:40CrossRefGoogle Scholar
  24. 24.
    Buchkremer HP, Diekmann U, Stöver D (1996) In: Thorstensen B (ed) Proceedings of 2nd Eur. SOFC Forum, Oslo, The European Fuel Cell Forum, Oberrohrdorf, Switzerland, p 221Google Scholar
  25. 25.
    Mertens J, Haanappel VAC, Tropartz C, Herzhof W, Buchkremer HP (2006) J Fuel Cell Sci Technol 3:125CrossRefGoogle Scholar
  26. 26.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1993) In: Badwal SPS, Bannister MJ, Hannink RHJ (eds) Proceedings of Science and Technology of Zirconia V, Technomic Publ. Co., Lancaster, Pennsylvania, USA, p 59Google Scholar
  27. 27.
    Tietz F, Arul Raj I., Stöver D (2004) Brit Ceram Trans 103:202CrossRefGoogle Scholar
  28. 28.
    Ioffe AI, Rutman DS, Karpachov SV (1978) Electrochim Acta 23:141CrossRefGoogle Scholar
  29. 29.
    Schmalzried H (1977) Z Phys Chem Neue Folge 105:47CrossRefGoogle Scholar
  30. 30.
    Mizusaki J, Warangai K, Tsuchiya S, Tagawa H, Arai Y, Kuwayama Y (1996) J Am Ceram Soc 79:109CrossRefGoogle Scholar
  31. 31.
    McLachlan DS, Blaszkiewicz M, Newnham RE (1990) J Am Ceram Soc 73:2187CrossRefGoogle Scholar
  32. 32.
    Van Herle J, McEvoy AJ, Ravindranathan Thampi K (1994) J Mater Sci 29:3691CrossRefGoogle Scholar
  33. 33.
    Ciacchi FT, Crane KM, Badwal SPS (1994) Solid State Ionics 73:49CrossRefGoogle Scholar
  34. 34.
    Simwonis D, Tietz F, Stöver D (2000) Solid State Ionics 132:241CrossRefGoogle Scholar
  35. 35.
    Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F (2005) J Power Sources 141:216CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • X. Mantzouris
    • 1
  • N. Zouvelou
    • 1
  • V. A. C. Haanappel
    • 2
  • F. Tietz
    • 2
    Email author
  • P. Nikolopoulos
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Forschungszentrum Jülich GmbHInstitut für Energieforschung (IEF)JulichGermany

Personalised recommendations