Journal of Materials Science

, Volume 42, Issue 23, pp 9582–9594 | Cite as

Magnetostriction of binary and ternary Fe–Ga alloys

Article

Abstract

This article will review the development of the Fe–Ga (Galfenol) alloy system for magnetostriction applications including work on substitutional ternary alloying additions for magnetic property enhancement. A majority of the alloying addition research has focused on substitutional ternary elements in Bridgman grown single crystals with the intent of improving the magnetostrictive capability of the Galfenol system. Single crystals provide the ideal vehicle to assess the effectiveness of the addition on the magnetostrictive properties by eliminating grain boundary effects, orientation variations, and grain-to-grain interactions that occur when polycrystals respond to applied magnetic fields. In almost all cases, ternary additions of transition metal elements have decreased the magnetostriction values from the binary Fe–Ga alloy. Most of the ternary additions are known to stabilize the D03 chemical order and could be a primary contribution to the observed reduction in magnetostriction. In contrast, both Sn and Al are found to substitute chemically for Ga. For Sn additions, whose solubility is limited, no reduction in magnetostriction strains are observed when compared to the equivalent binary alloy composition. Aluminum additions, whose effect on the magnetoelastic coupling on Fe is similar to Ga, result in a rule of mixture relationship. The reviewed research suggests that phase stabilization of the disordered bcc structure is a key component to increase the magnetostriction of Fe–Ga alloys.

References

  1. 1.
    Clark AE, Hathaway KB, Wun-Fogle M, Restorff JB, Lograsso TA, Keppens VM, Petculescu G, Taylor RA (2003) J Appl Phys 93:8621CrossRefGoogle Scholar
  2. 2.
    Kellogg R (2003) PhD. Dissertation, Iowa State UniversityGoogle Scholar
  3. 3.
    Kellogg RA, Flatau AB, Clark AE, Wun-Fogle M, Lograsso TA (2003) J Appl Phys 93:8495CrossRefGoogle Scholar
  4. 4.
    Kellogg RA, Flatau AB, Clark AE, Wun-Fogle M, Lograsso TA, Russell AM (2003) In: Lagoudas DC (ed) Smart structures and materials 2003: Active materials: behavior and mechanics. SPIE, Bellingham, WA, 5053, p 534Google Scholar
  5. 5.
    Summers E, Lograsso TA, Snodgrass JD, Slaughter J (2004) In: Lagoudas DC (ed) Smart structures and materials 2004: Active materials: behavior and mechanics. SPIE, Bellingham, WA, 5387, p 460Google Scholar
  6. 6.
    Massalski TB (ed) (2004) Binary phase diagrams, 2nd edn. ASM International, Materials Park, OhioGoogle Scholar
  7. 7.
    Köster W, Gödecke T (1977) Z Metallkde 68:661Google Scholar
  8. 8.
    Dasarathy W, Hume-Rothery W (1965) Proc R Soc (London) A 286:141CrossRefGoogle Scholar
  9. 9.
    Bras J, Couderc JJ, Fagot M, Ferre J (1977) Acta Met 25:1077CrossRefGoogle Scholar
  10. 10.
    Ikeda O, Kainuma R, Ohnuma I, Fukamichi K, Ishida K (2002) J Alloys Comp 347:198CrossRefGoogle Scholar
  11. 11.
    Kawamiya N, Adachi K, Nakamura Y (1972) J Phys Soc Japan 33:1318Google Scholar
  12. 12.
    Köster W, Gödecke T (1977) Z Metallkde 68:582Google Scholar
  13. 13.
    Gödecke T, Köster W (1977) Z Metallkde 68:758Google Scholar
  14. 14.
    Lograsso TA, Ross AR, Schlagel DL, Clark AE, Wun-Fogle M (2003) J Alloys Comp 350:95CrossRefGoogle Scholar
  15. 15.
    Clark AE, Wun-Fogle M, Restorff JB, Lograsso TA, Cullen JR (2001) IEEE Trans Magn 37:2678CrossRefGoogle Scholar
  16. 16.
    Clark AE, Wun-Fogle M, Restorff JB, Lograsso TA (2001) In: Hanada S, Zhong Z, Nam SW, Wright RN (eds) Proc fourth Pacific Rim Int. Conf. on advanced materials and processing (PRICM4), The Japan Institute of Metals, p 1711Google Scholar
  17. 17.
    Clark AE, Wun-Fogle M, Restorff JB, Lograsso TA (2002) Mat Trans 43:881CrossRefGoogle Scholar
  18. 18.
    Lograsso TA, Summers EM (2006) Mat Sci Eng 416:240CrossRefGoogle Scholar
  19. 19.
    Hall RC (1959) J Appl Phys 30:816CrossRefGoogle Scholar
  20. 20.
    Hall RC (1960) J Appl Phys 31:1037CrossRefGoogle Scholar
  21. 21.
    Guruswamy S, Srisukhumbowornchai N, Clark AE, Restorff JB, Wun-Fogle M (2000) Scr Mater 43:239CrossRefGoogle Scholar
  22. 22.
    Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL (2000) IEEE Trans Magn 36:3238CrossRefGoogle Scholar
  23. 23.
    Cullen JR, Clark AE, Wun-Fogle M, Restorff JB, Lograsso TA (2001) J Mag Mag Mat 226:948CrossRefGoogle Scholar
  24. 24.
    Wuttig M, Dai L, Cullen J (2002) Appl Phys Lett 80:1135CrossRefGoogle Scholar
  25. 25.
    Petculescu G, Hathaway KB, Lograsso TA, Wun-Fogle M, Clark AE (2005) J Appl Phys 97:10M315CrossRefGoogle Scholar
  26. 26.
    Clark AE, Restorff JB, Wun-Fogle M, Dennis KW, Lograsso TA, McCallum RW (2005) J Appl Phys 97:10M316CrossRefGoogle Scholar
  27. 27.
    Tatsumoto E, Okamoto T (1959) J Phys Soc Jpn 14:1588CrossRefGoogle Scholar
  28. 28.
    (1973) AIP Handbook, 3rd edn. McGraw–Hill, New York, pp 5–145Google Scholar
  29. 29.
    Rafique S, Cullen JR, Wuttig M, Cui J (2004) J Appl Phys 95:6939CrossRefGoogle Scholar
  30. 30.
    Bai F, Li J, Viehland D, Wu D, Lograsso TA (2005) J Appl Phys 98:023904CrossRefGoogle Scholar
  31. 31.
    Viehland D, Li JF, Lograsso TA, Ross A, Wuttig Manfred (2002) Appl Phys Lett 81:3185CrossRefGoogle Scholar
  32. 32.
    Wu R (2002) J Appl Phys 91:7358CrossRefGoogle Scholar
  33. 33.
    Kawamiya N, Adachi K (1983) J Magn Magn Mater 31–34:145CrossRefGoogle Scholar
  34. 34.
    Nishino Y, Matsuo M, Asano S, Kawamiya N (1991) Scr Metall Mater 25:2291CrossRefGoogle Scholar
  35. 35.
    Srisukhumbowornchai N, Guruswamy S (2001) J Appl Phys 90:5680CrossRefGoogle Scholar
  36. 36.
    Mungsantisuk P, Corson R, Guruswamy S (2004) In: Chandra D, Bautista RG, Schlapbach L (eds) Advanced materials for energy conversion II. TMS, p 275Google Scholar
  37. 37.
    Mungsantisuk P, Corson R, Guruswamy S (2005) J Appl Phys 98:123907CrossRefGoogle Scholar
  38. 38.
    Bormio-Nunes C, Turtelli RS, Mueller H, Grössinger R, Sassik H, Tirelli MA (2005) J Mag Mag Mat 290–291:820CrossRefGoogle Scholar
  39. 39.
    Dai L, Cullen J, Wuttig M, Lograsso TA, Quandt E (2003) J Appl Phys 93:8627CrossRefGoogle Scholar
  40. 40.
    Clark AE, Restorff JB, Wun-Fogle M, Hathaway KB, Lograsso TA, Huang M, Summers EM (2007) J Appl Phys 101:09C507CrossRefGoogle Scholar
  41. 41.
    McKamey CG, DeVan JH, Tortorelli PF, Sikka VK (1991) J Mat Res 6:1779Google Scholar
  42. 42.
    Cheng LM, Veinot D, Fraser P (2006) Quasi-Brittle Fracture in Polycrystalline Galfenol. Study completed for Etrema Products, Inc. through an ONR sub-contract, October 2006Google Scholar
  43. 43.
    Restorff JB, Wun-Fogle M, Clark AE, Lograsso TA, Ross AR, Schlagel DL (2002) J Appl Phys 91:8225CrossRefGoogle Scholar
  44. 44.
    Bozorth RM (1951) Ferromagnetism. Van Nostrand, Princeton, NJ, p 667Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Etrema Products, Inc.AmesUSA
  2. 2.Materials and Engineering Physics, 124 Metals Development Ames LaboratoryIowa State UniversityAmesUSA
  3. 3.Carderock DivisionNaval Surface Warfare CenterW. BethesdaUSA

Personalised recommendations