Journal of Materials Science

, Volume 42, Issue 22, pp 9480–9490 | Cite as

Enhancement of magnetic losses in hybrid polymer composites with MnZn-ferrite and conductive fillers

  • Robert Moučka
  • Alexander V. Lopatin
  • Natalia E. KazantsevaEmail author
  • Jarmila Vilčáková
  • Petr Sáha


Polymer composites (PCs) with a polyurethane (PU) matrix filled with magnetic filler (MnZn ferrite) and hybrid polymer composites (HPCs) consisting of this magnetic filler and various types of conductive fillers (carbon black, carbon fibers, aluminum powder, polypyrrole) are prepared. The matrix structure of a HPC is formed (i) by a polymer filled with conductive filler, which forms the skeleton of an infinite cluster, and (ii) by ferrite particles that are larger than conductive particles. Thus, an HPC represents an ensemble of ferrite particles each of which is surrounded by a conductive medium and can be considered as a “core–shell” structure. The development of a core–shell structure is evidenced by the lower electric percolation threshold in an HPC compared with that in PU filled with conductive filler. Magnetic and dielectric spectra of PCs and HPCs are studied in the frequency range from 1 MHz to 10 GHz. Hybrid systems exhibit a considerable enhancement of magnetic losses compared with PCs. The enhancement of magnetic losses in HPCs is due to the conduction currents that are induced in the conductive shell by a microwave magnetic field.


Ferrite Percolation Threshold Magnetic Loss Conductive Filler Conductive Particle 



The authors acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (ME 883 KONTAKT), and the Russian Foundation for Basic Research (project no. 06-08-00145).


  1. 1.
    Schloemann E (2000) J Magn Magn Mater 209:15CrossRefGoogle Scholar
  2. 2.
    Pardavi-Horvath M (2000) J Magn Magn Mater 215–216:171CrossRefGoogle Scholar
  3. 3.
    Lebourgeois R, Ganne J-P, Peyresoubes G, Rebernak W, Adenot A-L, Acher O (2003) J Magn Magn Mater 254–255:608CrossRefGoogle Scholar
  4. 4.
    Nakamura T, Miyamoto T, Yamada Y (2003) J Magn Magn Mater 256:340CrossRefGoogle Scholar
  5. 5.
    Yusoff AN, Abdullah MH (2004) J Magn Magn Mater 269:271CrossRefGoogle Scholar
  6. 6.
    Nakamura T, Tsutaoka T, Hatakeyama K (1994) J Magn Magn Mater 138:319CrossRefGoogle Scholar
  7. 7.
    Tsutaoka T (2003) J Appl Phys 93:2789CrossRefGoogle Scholar
  8. 8.
    Fiske TJ, Gokturk HS, Kalyon DM (1997) J Mater Sci 32:5551CrossRefGoogle Scholar
  9. 9.
    Labbé S, Bertin P-Y (1999) J Magn Magn Mater 206:93CrossRefGoogle Scholar
  10. 10.
    Kazantseva NE, Ponomarenko AT, Shevchenko VG, Klason C (2000) Electromagnetics 20:387CrossRefGoogle Scholar
  11. 11.
    Mattei J-L, Le Floc’h M (2003) J Magn Magn Mater 257:335CrossRefGoogle Scholar
  12. 12.
    Kasagi T, Tsutaoka T, Hatakeyama K (2004) J Magn Magn Mater 272–276:2224CrossRefGoogle Scholar
  13. 13.
    Annadurai P, Mallick AK, Tripathy DK (2002) J Appl Polym Sci 83:145CrossRefGoogle Scholar
  14. 14.
    Josyulu OS, Sobhanadri J (1985) J Mater Sci 20:2750CrossRefGoogle Scholar
  15. 15.
    Mchenry ME, Brunsman EM, Majetich SA (1995) IEEE Trans Magn 31:3787CrossRefGoogle Scholar
  16. 16.
    Crisan O, Angelakeris M, Flevaris NK, Filoti G (2003) J Optoel Adv Mater 5:959Google Scholar
  17. 17.
    Yavuz O, Ram MK, Aldissi M, Poddar P, Hariharan S (2005) Synth Met 151:211CrossRefGoogle Scholar
  18. 18.
    Kazantseva NE, Vilčáková J, Křesálek V, Sáha P, Sapurina I, Stejskal J (2004) J Magn Magn Mater 269:30CrossRefGoogle Scholar
  19. 19.
    Kazantseva NE, Bespyatykh YuI, Sapurina I, Stejskal J, Vilčáková J, Sáha P (2006) J Magn Magn Mater 301:155CrossRefGoogle Scholar
  20. 20.
    Strümpler R, Glatz-Reichenbach J (1999) J Electroceramics 3(4):329CrossRefGoogle Scholar
  21. 21.
    Kazantsev Yu (1998) In: Proceedings of the XIV international conference on gyromagnetic electronics and electrodynamics (microwave ferrites), Moscow, vol 2, p 205Google Scholar
  22. 22.
    Le Floc’h M, Mattei JL, Laurent P, Minot O, Konn AM (1995) J Magn Magn Mater 140–144:2191Google Scholar
  23. 23.
    Gurevich AG, Melkov GA (1996) Magnetization oscillation and waves. CRC Press, IncGoogle Scholar
  24. 24.
    Baziard Y, Breton S, Toutain S, Gourdenne A (1988) Eur Polym J 24:521CrossRefGoogle Scholar
  25. 25.
    Prigodin VN, Epstein AJ (2002) Synth Met 125:43CrossRefGoogle Scholar
  26. 26.
    Smit J, Wijn HPJ (1959) Ferrites. Philips Technical Library, EindhovenGoogle Scholar
  27. 27.
    Vonsovskii SV (1971) Magnetism. Nauka, MoscowGoogle Scholar
  28. 28.
    Chevalier A, Mattei JL, Le Floc’h M (2000) J Magn Magn Mater 215–216:66CrossRefGoogle Scholar
  29. 29.
    Mattei JL, Le Floc’h M (2003) J Magn Magn Mater 264:86CrossRefGoogle Scholar
  30. 30.
    Lichtenekker K (1926) Phys Z S 27:118Google Scholar
  31. 31.
    Musal HM, Hahn HT, Bush GG (1988) J Appl Phys 63:3768CrossRefGoogle Scholar
  32. 32.
    Balberg I (2002) Carbon 40:139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Robert Moučka
    • 1
  • Alexander V. Lopatin
    • 1
    • 2
  • Natalia E. Kazantseva
    • 1
    • 2
    Email author
  • Jarmila Vilčáková
    • 1
  • Petr Sáha
    • 1
  1. 1.Polymer Centre, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  2. 2.Institute of Radio Engineering and ElectronicsRussian Academy of SciencesFryazino, Moscow RegionRussia

Personalised recommendations