Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 9934–9939 | Cite as

Fracture behavior of nitrile rubber-cellulose II nanocomposites

  • Vera Lucia C. Lapa
  • João Carlos Miguez Suarez
  • Leila Lea Y. Visconte
  • Regina Célia Reis NunesEmail author
Article

Abstract

Nanocomposites of nitrile rubber (NBR) and cellulose II (Cel II) were prepared by co-coagulation of nitrile rubber latex and cellulose xanthate mixtures. The effect of the addition of increasing amounts of Cell II, varying from 0 to 30 phr, on the mechanical behavior of a NBR was analyzed. The fracture mechanisms of the nitrile rubber-cellulose II (NBR/Cel II) nanocomposites after tension and tear tests was investigated by scanning electron microscopy (SEM) and correlated to the test results. It was found that the addition of Cell II to NBR leads to a gradual change in the stress at break, and the samples with 20 phr of Cel II showed the highest resistance; as the cellulose content is increased to 30 phr, the strain at break decreases. The SEM fractographic analyses of NBR/Cel II nanocomposites, with cellulose content up to 30 support the observed mechanical behavior of the material. The results are presented and discussed. The obtainment of NBR/Cel II nanocomposites was proven by transmission electron microscopy (TEM).

Keywords

Vulcanization Zinc Sulfate Rubber Matrix Rubber Composite Nitrile Rubber 

Notes

Acknowledgements

The authors thank the Brazilian Funding Agencies, CNPq, CAPES and FAPERJ for providing the financial support, VICUNHA Têxtil S. A. for supplying cellulose xanthate and NITRIFLEX S. A. Indústria e Comércio for supplying nitrile rubber latex.

References

  1. 1.
    Arroyo M, López-Manchado MA, Herrero B (2003) Polymer 44:2447CrossRefGoogle Scholar
  2. 2.
    Boonstra BB (1979) Polymer 20:691CrossRefGoogle Scholar
  3. 3.
    Shadu S, Bhowmick AK (2005) J Mater Sci 49:1663Google Scholar
  4. 4.
    Nunes RCR, Mano EB (1995) Polym Compos 16(5):241CrossRefGoogle Scholar
  5. 5.
    Vieira A, Nunes RCR, Costa DMR (1997) Polym Bull 39:117CrossRefGoogle Scholar
  6. 6.
    Affonso JES, Nunes RCR (1995) Polym Bull 34:669CrossRefGoogle Scholar
  7. 7.
    Nunes RCR, Visconte LLY (2000) Natural fibers reinforced elastomeric composites. In: Frollini E, Leão AL, Mattoso LHC (eds) Natural polymers and agrofibers composites. Embrapa Instrumentação Agropecuária, SP, Brazil, 135Google Scholar
  8. 8.
    Allen SL, Turvey RW, Bolker HI (1975) Appl Polym Sympos 3(28):903Google Scholar
  9. 9.
    Zugenmaier P (2001) Prog Polym Sci 26:1341CrossRefGoogle Scholar
  10. 10.
    Martins AF, Miguez Suarez JC, Visconte LLY, Nunes RCR (2003) J Mater Sci 38:2415CrossRefGoogle Scholar
  11. 11.
    Martins AF, Visconte LLY, Schuster RH, Boller F, Nunes RCR (2004) Kautsch Gummi Kunstst 57(9):446Google Scholar
  12. 12.
    Martins AF (2002) PhD Thesis, Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, BrazilGoogle Scholar
  13. 13.
    Peres ECC, Nunes RCR, Visconte LLY (2001) PI 0105116-4 Google Scholar
  14. 14.
    Brandt K, Schuster RH, Nunes RCR (2006) Kautsch Gummi Kunstst 59(10):511Google Scholar
  15. 15.
    Agarwal K, Setua DK, Sekhar K (2005) Polym Test 24(6):781CrossRefGoogle Scholar
  16. 16.
    Nunes RCR, Martins AF, Visconte LLY, Pereira RA, Perez CAC, Mano EB (2004) J Rubber Res 7(1):1Google Scholar
  17. 17.
    Chawla KK (1998) Composite materials—science and engineering, 2nd edn. Springer-Verlag, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Vera Lucia C. Lapa
    • 1
  • João Carlos Miguez Suarez
    • 2
  • Leila Lea Y. Visconte
    • 1
  • Regina Célia Reis Nunes
    • 1
    Email author
  1. 1.Instituto de Macromoléculas Professora Eloísa ManoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Militar de EngenhariaSeção de Engenharia Mecânica e de MateriaisRio de JaneiroBrazil

Personalised recommendations