Journal of Materials Science

, Volume 42, Issue 24, pp 10065–10073 | Cite as

Ac conductivity and its scaling behavior in borate and bismuthate glasses

  • Rathinasamy MurugarajEmail author


In the present work, ac conductivity measurement and its compositional dependence scaling analysis are studied on lithium and sodium based borate and bismuthate glasses in the frequency range from 20 Hz to 1 MHz at different temperatures. The measured conductivity data of these glasses are analyzed using Cole-Cole type impedance response function, Jonscher’s universal power law and Dyre’s random free energy barrier model. To get a consistent stand point on ion dynamics, different microscopic models and theories proposed for the ion conduction mechanism in disordered ionic solids are discussed and compared. Universality features of ac conductivity and its scaling behavior are discussed. The compositional dependence scaling behavior in borate and bismuthate glasses are studied using Jonscher’s power law hopping frequency ωp and minimum jump frequency γmin in Dyre’s random free energy barrier model. The scaling results are compared and reported.


Master Curve Composition Dependence Scaling Behavior Conductivity Spectrum Static Dielectric Constant 


  1. 1.
    Dyre JC, Schröder TB (2000) Rev Mod Phys 72:873CrossRefGoogle Scholar
  2. 2.
    Sidebottom DL, Roling B, Funke K (2001) Phys Rev B 63:5068Google Scholar
  3. 3.
    MacDonald JR (1997) J Non-Cryst Solids 210:70CrossRefGoogle Scholar
  4. 4.
    Roling B (1998) Solid State Ionics 105:185CrossRefGoogle Scholar
  5. 5.
    Lee WK, Liu JF, Nowick AS (1991) Phys Rev Lett 67:1559CrossRefGoogle Scholar
  6. 6.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsa Dielectric Press, LondonGoogle Scholar
  7. 7.
    Elliot SR, Owens AP (1989) Phil Mag B 60:777CrossRefGoogle Scholar
  8. 8.
    Bunde A, Ingram MD, Maass P (1994) J Non-Cryst Solids 172–174:1222CrossRefGoogle Scholar
  9. 9.
    Funke K (1993) Prog Solid State Chem 22:111CrossRefGoogle Scholar
  10. 10.
    Ross Macdonald J (ed) (1987) Impedance spectroscopy. John Wiley & Sons Inc., New YorkGoogle Scholar
  11. 11.
    Anderson OL, Stuart DA (1954) J Am Ceram Soc 37:573CrossRefGoogle Scholar
  12. 12.
    Ravine D, Souquet JL (1977) Phys Chem Glasses 18:27Google Scholar
  13. 13.
    Minami T, Imazawa K, Tanaka M (1980) J Non-Cryst Solids 42:469CrossRefGoogle Scholar
  14. 14.
    Ingram MD (1987) Phys Chem Glasses 28:215Google Scholar
  15. 15.
    Johari GP, Pathmanathan K (1988) Phys Chem Glasses 29:219Google Scholar
  16. 16.
    Cramer C, Funke K, Saatkamp T (1995) Phil Mag B 71:701CrossRefGoogle Scholar
  17. 17.
    Govindaraj G, Murugaraj R (1998) In: Chowdari BVR et al. (eds) Solid state ionics: science and technology. World Scientific, Singapore, p 109Google Scholar
  18. 18.
    Williams G, Watts DC (1970) Trans Faraday Soc 66:80CrossRefGoogle Scholar
  19. 19.
    Maass P, Petersen J, Bunde A, Dieterich W, Roman HE (1991) Phys Rev Lett 66:52CrossRefGoogle Scholar
  20. 20.
    Ngai KL (1999) J Non-Cryst Solids 248:194CrossRefGoogle Scholar
  21. 21.
    Ngai KL (1999) J Chem Phys 110:10576CrossRefGoogle Scholar
  22. 22.
    Bunde A, Funke K, Ingram MD (1996) Solid State Ionics 86–88:1311CrossRefGoogle Scholar
  23. 23.
    Dyre JC (1988) J Appl Phys 64:2456; 135 (1991) 219Google Scholar
  24. 24.
    Roling B, Happe A, Funke K, Ingram MD (1997) Phys Rev Lett 78:2160CrossRefGoogle Scholar
  25. 25.
    Sidebottom DL (1999) Phys Rev Lett 82:3653CrossRefGoogle Scholar
  26. 26.
    Ghosh A, Pan A (2000) Phys Rev Lett 84:2188CrossRefGoogle Scholar
  27. 27.
    Macdonald JR (2001) J Appl Phys 90:153CrossRefGoogle Scholar
  28. 28.
    Isard JO (1970) J Non-Cryst Solids 4:357CrossRefGoogle Scholar
  29. 29.
    Kahnt H (1991) Ber Bunsen-Ges Phys Chem 95:1021CrossRefGoogle Scholar
  30. 30.
    Schröder TB, Dyre JC (2000) Phys Rev Lett 84:310CrossRefGoogle Scholar
  31. 31.
    Roling B, Martiny C (2000) Phys Rev Lett 85:1274CrossRefGoogle Scholar
  32. 32.
    Almond DP, West AR (1983) Solid State Ionics 9/10:277; 23 (1987) 27Google Scholar
  33. 33.
    Murugaraj R, Govindaraj G, George D (2002) J Mat Sci 37:5101CrossRefGoogle Scholar
  34. 34.
    Murugaraj R, Govindaraj G, Suganthi R, George D (2003) J Mat Sci 38:107CrossRefGoogle Scholar
  35. 35.
    Murugaraj R, Govindaraj G, George D (2003) Mat Lett 57:1656CrossRefGoogle Scholar
  36. 36.
    Boukamp BA, Equivalent Circuit Version 3.97 (1989) Dept. of Chem. Tech., Univ. of Twente, 7500, AE Enschede, The NetherlandsGoogle Scholar
  37. 37.
    Otto K (1966) Phys Chem Glasses 7:29Google Scholar
  38. 38.
    Pan A, Ghosh G (1999) Phys Rev B 60:3224CrossRefGoogle Scholar
  39. 39.
    Pan A, Ghosh G (2001) J Chem Phys 112:150Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Applied Sciences and HumanitiesMadras Institute of Technology, Anna UniversityChennaiIndia

Personalised recommendations