Journal of Materials Science

, Volume 43, Issue 7, pp 2123–2130

Hydrothermal syntheses, structures and magnetic properties of coordination frameworks of divalent transition metals

  • Hitoshi Kumagai
  • Hideo Sobukawa
  • Mohamedally Kurmoo
Novel Routes of Advanced Materials Processing and Applications


The hydrothermal syntheses, single-crystal X-ray structures and magnetic properties of [Co(C4O4)(H2O)2] (1), [Co3(OH)2(C4O4)2] · 3H2O (2) and [Fe(OH)2(C4O4)] (3) are described. Pale yellow cubes of 1 and brown red crystals of 2 were obtained from the reaction of Co(OH)2 and squaric acid at 200 °C. Brown needle of 3 were obtained similarly from Fe(SO4) · 7H2O, squaric acid and NaOH. 1 consists of a cubic sodalite arrangement with empty cavities where the Co atoms are connected by μ4-squarate and two trans-water molecules each, while 2 and 3 contain metal-hydroxide double-chains of edge-sharing octahedral, brucite-type for 2 and goethite for 3, connected by μ6-squarate. 2 contains water molecules in the channels which can be removed and re-inserted repeatedly without loss of crystallinity. All three compounds possess 3D frameworks made up of coordination and hydrogen bonds. 1 behaves as a paramagnet while 2 and 3 are antiferromagnets and 2 transforms to a ferromagnet reversibly upon dehydration and rehydration. The structures of two one-dimensional polymers employing 2,5-pyridinedicarboxylate, [Co2(H2O)6(2,5-pydc)2] · 2H2O (4) and Cu(2,5-pydc)2 (5), are also reported.


  1. 1.
    Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43:2334CrossRefGoogle Scholar
  2. 2.
    Kepert CJ (2006) Chem Commun 695Google Scholar
  3. 3.
    Day P, Kurmoo M (1997) J Mater Chem 7:1291CrossRefGoogle Scholar
  4. 4.
    Kobayashi H, Sato A, Arai E, Akutsu H, Kobayashi A, Cassoux P (1997) J Am Chem Soc 119:12392CrossRefGoogle Scholar
  5. 5.
    Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Science 298:1762CrossRefGoogle Scholar
  6. 6.
    Kurmoo M, Graham AW, Day P, Coles SJ, Hursthouse MB, Caulfield JL, Singleton J, Francis JP, Hayes W, Ducasse L, Guionneau P (1995) J Am Chem Soc 117:12209CrossRefGoogle Scholar
  7. 7.
    Mori W, Takamizawa S (2000) J Solid State Chem 152:120CrossRefGoogle Scholar
  8. 8.
    Kitagawa S, Kondo M (1998) Bull Chem Soc Jpn 71:1739CrossRefGoogle Scholar
  9. 9.
    Biradha K, Fujita M (2002) Angew Chem Int Ed 41:3392CrossRefGoogle Scholar
  10. 10.
    Wang Z-M, Zhang B, Fujiwara H, Kobayashi H, Kurmoo M (2004) Chem Commun 416Google Scholar
  11. 11.
    Yamada K, Yagishita S, Tanaka H, Tohyama K, Adachi K, Kaizaki S, Kumagai H, Inoue K, Kitaura R, Chang H-C, Kitagawa S, Kawata S (2004) Chem Eur J 10:1CrossRefGoogle Scholar
  12. 12.
    Kurmoo M, Kumagai H, Green MA, Lovett BW, Blundell SJ, Ardavan A (2001) J Solid State Chem 159:343CrossRefGoogle Scholar
  13. 13.
    Kumagai H, Oka Y, Tanaka M-A, Inoue K (2002) Inorg Chim Acta 332:176CrossRefGoogle Scholar
  14. 14.
    Kumagai H, Chapmann KM, Kepert CJ, Kurmoo M (2003) Polyhedron 22:1921CrossRefGoogle Scholar
  15. 15.
    Kumagai H, Kepert CJ, Kurmoo M (2002) Inorg Chem 41:3410CrossRefGoogle Scholar
  16. 16.
    Rujiwatra A, Kepert CJ, Claridge JB, Rosseinsky MJ, Kumagai H, Kurmoo M (2001) J Am Chem Soc 123:10584CrossRefGoogle Scholar
  17. 17.
    Kumagai H, Oka Y, Inoue K, Kurmoo M (2002) J Chem Soc Dalton Trans 3442Google Scholar
  18. 18.
    Kumagai H, Ohba M, Inoue K, Okawa H (2002) Chem Lett 1006Google Scholar
  19. 19.
    Kumagai H, Akita-Tanaka M, Kawata S, Inoue K (2005) Chem Lett 526Google Scholar
  20. 20.
    Kurmoo M, Kumagai H (2002) Mol Cryst Liq Cryst 397:555Google Scholar
  21. 21.
    Kumagai H, Oka Y, Inoue K, Kurmoo M (2004) J Phys Chem Solid 65:55CrossRefGoogle Scholar
  22. 22.
    Kurmoo M, Kumagai H, Hughes SM, Kepert CJ (2003) Inorg Chem 42:6709CrossRefGoogle Scholar
  23. 23.
    Kumagai H, Akita-Tanaka M, Inoue K, Kurmoo M (2001) J Mater Chem 11:2146CrossRefGoogle Scholar
  24. 24.
    (a) Kumagai H, Inoue K, Kurmoo M (2002) Bull Chem Soc Jpn 75:1282 (b) Kurmoo M, Estournes C, Oka Y, Kumagai H, Inoue K (2005) Inorg Chem 44:217Google Scholar
  25. 25.
    Kurmoo M (1999) Chem Mater 11:3370CrossRefGoogle Scholar
  26. 26.
    Kurmoo M (1999) Phil Trans A 357:3041CrossRefGoogle Scholar
  27. 27.
    Kurmoo M (1999) J Mater Chem 9:2595CrossRefGoogle Scholar
  28. 28.
    Kurmoo M, Kumagai H, Akita-Tanaka M, Inoue K, Takagi S (2006) Inorg Chem 45:1627CrossRefGoogle Scholar
  29. 29.
    Kurmoo M, Kumagai H, Chapman KW, Kepert CJ (2006) Chem Commun 3012Google Scholar
  30. 30.
    Robl C, Weiss A (1986) Z Naturforsch 41B:1341Google Scholar
  31. 31.
    Kawata S, Kitagawa S, Kumagai H, Ishiyma T, Honda K, Tobita H, Adachi K, Katada M (1998) Chem Mater 10:3902CrossRefGoogle Scholar
  32. 32.
    Gutschke SOH, Molinier M, Powell AK, Wood PW (1997) Angew Chem Int Ed 36:991CrossRefGoogle Scholar
  33. 33.
    Lee C-R, Wang C-C, Chen K-C, Lee G, Wang YJ (1999) Phys Chem A103:156Google Scholar
  34. 34.
    Yaghi OM, Li G, Groy TL (1995) J Chem Soc Dalton TransGoogle Scholar
  35. 35.
    Weiss A, Riegler E, Alt I, Bohme H, Robl CZ (1986) Naturforsch 41B:18Google Scholar
  36. 36.
    Yufit DS, Price DJ, Howard JAK, Gutschke SOH, Powell AK, Wood PT (1999) Chem Commun 1561Google Scholar
  37. 37.
    Hagrman PJ, Hagrman D, Zubieta J (1999) Angew Chem Int Ed 38:2638CrossRefGoogle Scholar
  38. 38.
    Gutschke SOH, Molinier M, Powell AK, Wood PW (1997) Angew Chem Int Ed Engl 36:991CrossRefGoogle Scholar
  39. 39.
    Lin KJ, Lii KH (1997) Angew Chem Int Ed Engl 36:2076CrossRefGoogle Scholar
  40. 40.
    Sheldrick GM (1985) Crystallographic computing 3. Oxford University PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hitoshi Kumagai
    • 1
  • Hideo Sobukawa
    • 1
  • Mohamedally Kurmoo
    • 2
  1. 1.Toyota Central R and D Labs. Inc.Aichi-gunJapan
  2. 2.Laboratoire de Chimie de Coordination Organique, UMR7140CNRS Université Louis Pasteur, Institut Le BelStrasbourg CedexFrance

Personalised recommendations