Journal of Materials Science

, Volume 43, Issue 7, pp 2104–2114 | Cite as

Solvothermal reactions: an original route for the synthesis of novel materials

Novel Routes of Advanced Materials Processing and Applications


Twenty years after the first development of solvothermal reactions, it appears important through the last research activities to trace the future trends taking into account their potentialities and the different economical constraints. During these last 20 years solvothermal reactions have been mainly used from preparing micro- or nanoparticles with different morphologies. Due to the importance to dispose of new materials for developing either basic research or industrial applications, such a presentation will be only focussed on the potentialities of solvothermal reactions in materials synthesis. Solvothermal reactions are mainly characterized by different chemical parameters (nature of the reagents and of the solvent) and thermodynamical parameters (in particular temperature, pressure). (a) The selection of the composition of the solvent opens new research areas for stabilizing materials belonging to different classes of materials (alloys, oxides, nitrides, sulphides…). (b) The mild temperature conditions generally used are able to improve chemical diffusion and reactivity in order to help the preparation of specific materials at the frontier between either different classes of inorganic materials (oxides-nitrides, nitrides-halides…) or inorganic/organic, inorganic/biologic frameworks. (c) The high pressure conditions, due to the small conveyed energy compared to temperature, allow also to stabilize metastable frontier materials (geo-inspired or bio-inspired materials). (d) In the future, taking into account, from one side: the economical and the environmental constraints, and from the other: the industrial demand of materials characterized by specific physical, chemical and biological properties, the potential developments of solvothermal processes will be analyzed.


  1. 1.
    Habashi F (2005) Hydrometallurgy 79:15Google Scholar
  2. 2.
    Goranson RW (1931) Am J Sci 22:481CrossRefGoogle Scholar
  3. 3.
    Hosaka M (1991) Prog Cryst Growth Charact Mater 21:71Google Scholar
  4. 4.
    Demazeau G (1999) J Mater Chem 9:15Google Scholar
  5. 5.
    Feng S, Xu R (2001) Acc Chem Res 34:239Google Scholar
  6. 6.
    Demianets LN (1990) Prog Crystal Growth Charact 21:299Google Scholar
  7. 7.
    Rabenau A, Rau H (1969) Philips Tech Rev 30:89Google Scholar
  8. 8.
    Gogotsi YG, Yoshimura M (1994) Nature 367:628Google Scholar
  9. 9.
    Yamasaki N, Yanagisawa K, Nishioka M, Nakahara S (1986) J Mater Sci Lett 5:355Google Scholar
  10. 10.
    Rajamathi M, Seshadri R (2002) Curr Opin Solid State Mater Sci 6:337Google Scholar
  11. 11.
    Rabenau A (1985) Angew Chem Int Ed Engl 24:1026Google Scholar
  12. 12.
    Yoshimura M (1998) J Mater Res 13:796Google Scholar
  13. 13.
    Riman RE, Suchanek NL, Lencka MM (2002) Ann Chim Sci Mater 27:15Google Scholar
  14. 14.
    Byrappa K, Yoshimura M (2006) Handbook of hydrothermal technology. Williams Andrews, LLC/Noyes Publications Park-Ridge, NJGoogle Scholar
  15. 15.
    Yu SH (2001) J Ceram Soc Jpn 109:565Google Scholar
  16. 16.
    Yoshimura M, Suchanek W (1997) Solid State Ionics 98:197Google Scholar
  17. 17.
    Komarneni S, Roy R, Li QH (1992) Mater Res Bull 27:1393Google Scholar
  18. 18.
    Wang Q, Pan D, Jiang S, Ji X, An L, Jiang B (2006) J Cryst Growth 286:83Google Scholar
  19. 19.
    Li B, Xie Y, Huang JX, Su HL, Qian YT (1999) J Solid State Chem 146:47Google Scholar
  20. 20.
    Jia DJ, Zhang Y, Dai J, Zhu QY, Gu XM (2004) J Solid State Chem 177:2476Google Scholar
  21. 21.
    Li B, Xie Y, Huang H, Qian Y (1999) Adv Mater 11:1456Google Scholar
  22. 22.
    Hama T, Ihara T, Sato H (1991) Sol Energy Mater 23:380Google Scholar
  23. 23.
    Zunger A, Wagner S, Petroff PM (1993) J Electron Mater 22:1Google Scholar
  24. 24.
    Lu J, Qi P, Peng Y, Meng Z, Yang Z, Yu W, Qian Y (2001) Chem Mater 13:2169Google Scholar
  25. 25.
    He Y, Zhu Y, Wu N (2004) J Solid State Chem 177:2985Google Scholar
  26. 26.
    Ji T, Tang M, Guo L, Qi X, Yang Q, Xu H (2005) Solid State Commun 133:765Google Scholar
  27. 27.
    Li Q, Shao M, Yu G, Wu J, Li F, Qian Y (2003) J Mater Chem 13:424Google Scholar
  28. 28.
    Li YD, Duan XF, Qian YT, Yang L, Ji MR, Li CW (1999) J Am Chem Soc 119:7869Google Scholar
  29. 29.
    Lotgering FK (1964) Solid State Commun 2:55Google Scholar
  30. 30.
    Ramesha K, Seshadri R (2004) Solid State Sci 6:841Google Scholar
  31. 31.
    Li J, Chen Z, Lam KC, Mulley S, Proserpio DM (1997) Inorg Chem 36:684Google Scholar
  32. 32.
    Roy R (1989) Solid State Ionics 32–33:3Google Scholar
  33. 33.
    Roy R (1994) J Solid State Chem 111:11Google Scholar
  34. 34.
    Reig P, Demazeau G, Naslain R (1995) Eur J Solid State Inorg Chem 32:439Google Scholar
  35. 35.
    Reig P, Demazeau G, Naslain R (1997) J Mater Sci 32:4189Google Scholar
  36. 36.
    Yamada T, Akaishi M, Yamaoka S (1997) International Conference on High Pressure Science and Technology, Joint AIRAPT 16-HPCJ-38 Conference—Kyoto Japan, August 25–29, 1997. Booklet of abstracts, p 35Google Scholar
  37. 37.
    Szymanski A, Abgarowicz E, Baron A, Niedbalska A, Salacinski R, Jentek J (1995) Diamond Relat Mater 4:234Google Scholar
  38. 38.
    Komath M, Cherian KA, Kulkarni SK, Ray A (1995) Diamond Relat Mater 4:20Google Scholar
  39. 39.
    Zhao XZ, Roy R, Cherian KA, Badzian A (1997) Nature 385:513Google Scholar
  40. 40.
    Roy R, Ravichandran D, Badzian A, Breval E (1996) Diamond Relat Mater 5:973Google Scholar
  41. 41.
    Korablov S, Yokosawa K, Korablov D, Tohji K, Yamasaki N (2006) Mater Lett 60:3041Google Scholar
  42. 42.
    Wentorf RH Jr (1961) J Chem Phys 34:809Google Scholar
  43. 43.
    Solozhenko V (1988) Zh Fiz Klum 62:3145Google Scholar
  44. 44.
    Maki J, Ikawa H, Fukunaga O (1991) In: Messier R, Glass JT, Butler JR, Roy R (eds) New diamond science and technology. MRS, p 1051Google Scholar
  45. 45.
    Demazeau G, Gonnet V, Solozhenko V, Tanguy B, Montigaud H (1995) C R Acad Sci 320(IIb):419Google Scholar
  46. 46.
    Hao XP et al (2001) Chem Mater 13:2457Google Scholar
  47. 47.
    Hao XP et al (2002) J Cryst Growth 241:124Google Scholar
  48. 48.
    Dong S, Hao X, Xu X, Cui D, Jiang M (2004) Mater Lett 58:2791Google Scholar
  49. 49.
    Xao X, Xu X, Jiang M (2004) J Cryst Growth 270:192Google Scholar
  50. 50.
    Chen L, Gu Y, Li Z, Qian Y, Yang Z, Ma J (2005) J Cryst Growth 273:646Google Scholar
  51. 51.
    Yu M, Li K, Lai Z, Cui D, Hao X, Jiang M, Wang Q (2004) J Cryst Growth 269:570Google Scholar
  52. 52.
    Cohen ML (1991) Philos Trans Soc Lond A 334:01Google Scholar
  53. 53.
    Teter DM, Hemley RJ (1996) Science 271:53Google Scholar
  54. 54.
    Montigaud H, Tanguy B, Demazeau G, Courjault S, Birot M, Dunogues J (1995) C R Acad Sci Paris Sér IIb 325:229Google Scholar
  55. 55.
    Montigaud H, Tanguy B, Demazeau G, Alves I, Birot M, Dunogues J (1999) Diamond Relat Mater 8:1707Google Scholar
  56. 56.
    Montigaud H, Tanguy B, Demazeau G, Alves I, Courjault S (2000) J Mater Sci 35:2547Google Scholar
  57. 57.
    Bai YJ, Lu B, Liu ZG, Li L, Cui DL, Xu XG, Wang QL (2003) J Cryst Growth 547:505Google Scholar
  58. 58.
    Lu Q, Cao C, Li C (2003) J Mater Chem 13:1241Google Scholar
  59. 59.
    Goglio G, Foy D, Demazeau G Materials Science and Engineering R (in press)Google Scholar
  60. 60.
    Liu Y, Zhang L, Shi Z, Yuan H, Pang W (2001) J Solid State Chem 158:68Google Scholar
  61. 61.
    Forster PM, Thomas PM, Gheetam AK (2002) Chem Mater 14:17Google Scholar
  62. 62.
    Cheetham AK, Ferey G, Loiseau T (1999) Angew Chem Int Ed Engl 39:3268Google Scholar
  63. 63.
    Shi Z, Feng S, Zhang L, Yang G, Hua J (2000) Chem Mater 12:2930Google Scholar
  64. 64.
    Clearfield A (1998) Chem Mater 10:2801Google Scholar
  65. 65.
    Chui SS, Lo YSMF, Charmant JPH, Orpen AG, Willams ID (1999) Science 283:1148Google Scholar
  66. 66.
    Batten SR, Robson R (1998) Angew Chem Int Ed Engl 37:1460Google Scholar
  67. 67.
    Wei B, Zhu G, Yu J, Qiu S, Xiao FS, Terasaki O (1999) Chem Mater 11:3417Google Scholar
  68. 68.
    Peng L, Li J, Yu J, Li G, Fang Q, Xu R (2005) CR Acad Sc Chim 8(3–4):541Google Scholar
  69. 69.
    Medina E, Iglesias M, Gutierrez-Puebla E, Angeles Monge M (2004) J Mater Chem 14:845Google Scholar
  70. 70.
    Mandal S, Kavitha G, Narayana C, Natarajan S (2004) J Solid State Chem 177:2198Google Scholar
  71. 71.
    Fu W, Shi Z, Li G, Zhang D, Dong W, Chen X, Feng S (2004) Solid State Sci 6:225Google Scholar
  72. 72.
    Sharma S, Ramanan A, Jansen M (2004) Solid State Ionics 170:93Google Scholar
  73. 73.
    Lutta ST, Chernoua NA, Zavalij PY, Whittingham MS (2003) J Mater Chem 13:1424Google Scholar
  74. 74.
    Schimeck GL, Kolis JW (1997) Chem Mater 9:2776Google Scholar
  75. 75.
    Li J, Chen Z, Wang RJ, Proserpio DM (1999) Coord Chem Rev 190–192:707Google Scholar
  76. 76.
    Chen Z, Wang RJ, Huang XY, Li J (2000) Acta Crystallogr C 56:1100Google Scholar
  77. 77.
    Jia DX, Zhang YZ, Dai J, Zhu QY, Gu XM (2004) J Solid State Chem 177:2476Google Scholar
  78. 78.
    Jia DX, Dai J, Zhu QY, Cao LH, Lin HH (2005) J Solid State Chem 178:874Google Scholar
  79. 79.
    Bawendi MG, Steigerwald ML, Brus LE (1990) Annu Phys Chem 41:477Google Scholar
  80. 80.
    Weller H (1993) Angew Chem Int Ed Engl 32:41Google Scholar
  81. 81.
    Iijima S (1991) Nature 354:56Google Scholar
  82. 82.
    Hu JT, Odom TW, Lieber CM (1999) Acc Chem Res 32:435Google Scholar
  83. 83.
    Hsu WK, Chang BH, Zhu YQ, Han WQ, Terrones M, Grobert N, Cheetham AK, kroto hw, Walton Dr (2000) J Am Chem Soc 122:10155Google Scholar
  84. 84.
    Liang WJ, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park H (2001) Nature 41:665Google Scholar
  85. 85.
    Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115Google Scholar
  86. 86.
    Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivistos AP (2000) Nature 404:59Google Scholar
  87. 87.
    Johnstin KP, Doty RC, Korgel BA (2000) Science 287:1471Google Scholar
  88. 88.
    Gudiksen MS, Lieber IM (2000) J Am Chem Soc 122:8801Google Scholar
  89. 89.
    Lei Y, Zhang LD, Fan JC (2001) Chem Phys Lett 338:231Google Scholar
  90. 90.
    Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Mater 13:113Google Scholar
  91. 91.
    Odom TW, Huang JL, Kim P, Lieber CM (2000) J Phys Chem B 104:2794Google Scholar
  92. 92.
    Thurn-Albrecht T, Schotter J, Mastle CA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Science 290:2126Google Scholar
  93. 93.
    Duan XF, Huang Y, Cui Y, Wang J, Lieber CM (2001) Nature 409:6816Google Scholar
  94. 94.
    Bocquet JF, Chhor K, Pommier C (1999) Mater Chem Phys 57:273Google Scholar
  95. 95.
    Wang C, Deng ZX, Zhang G, Fan S, Li Y (2002) Powder Technol 125:39–44Google Scholar
  96. 96.
    Chen D, Jiao X, Chen D (2001) Mater Res Bull 36:1057Google Scholar
  97. 97.
    Vasquez-Vasquez C, Lopez-Quintela MA (2006) J Solid State Chem 179:3229Google Scholar
  98. 98.
    Li WJ, Shi EW, Chen ZZ, Zhen YQ, Yin ZW (2002) J Solid State Chem 163:132Google Scholar
  99. 99.
    Wang YW, Xu HY, Wang H, Zhang YC, Song ZQ, Yan H, Wan CR (2004) Solid State Ionics 167:419Google Scholar
  100. 100.
    Zhou G, Lü M, Gu F, Wang S, Xiu Z, Cheng X (2004) J Cryst Growth 270:283Google Scholar
  101. 101.
    Ferreira OP, Otubo L, Romano R, Alves OL (2006) Cryst Growth Des 6:601Google Scholar
  102. 102.
    Pan AL, Liu RB, Wang SQ, Wu ZY, Cao L, Xie SS, Zou BS (2005) J Cryst Growth 282:125Google Scholar
  103. 103.
    Li B, Xie Y, Huang J, Qian Y (2000) J Solid State Chem 153:170Google Scholar
  104. 104.
    Ma C, Moore D, Li J, Wang ZL (2003) Adv Mater 15:228Google Scholar
  105. 105.
    Nath M, Choudhury A, Kundu A, Rao CNR (2003) Adv Mater 15:2098Google Scholar
  106. 106.
    Zheng RB, Zeng JH, Mo MS, Qian YT (2003) Mater Chem Phys 82:116Google Scholar
  107. 107.
    Gautam UK, Seshadri R, Rao CNR (2003) Chem Phys Lett 375:560Google Scholar
  108. 108.
    Vadivel-Murugan A, Sonowane RS, Kale BB, Apte SK, Kulkarni AV (2001) Mater Chem Phys 71:98Google Scholar
  109. 109.
    Zhao FH, Su Q, Xu NS, Ding CR, Wu MM (2006) J Mater Sci 41:1449Google Scholar
  110. 110.
    Meng Z, Peng Y, Xu L, Qian Y (2002) Mater Lett 53:165Google Scholar
  111. 111.
    Panda SK, Gorai S, Chaudhuri S (2006) Materials Science and Engineering B 129:265Google Scholar
  112. 112.
    Hua R, Jia Z, Xie D, Shi C (2002) Mat Res Bull 37:1189Google Scholar
  113. 113.
    Zhang M, Wang Z, Mo M, Chen X, Zhang R, Yu W, Qian Y (2005) Mater Chem Phys 89:373Google Scholar
  114. 114.
    Bai YJ, Liu ZG, Xu XG, Cui DL, Hao XP, Feng X, Wang QL (2002) J Crystal Growth 241:189Google Scholar
  115. 115.
    Sardar K, Rao CNR (2004) Adv Mater 16:425Google Scholar
  116. 116.
    Li L, Hao X, Yu N, Cui D, Xu X, Jiang M (2003) J Crystal Growth 258:268Google Scholar
  117. 117.
    Qian XF, Zhang XM, Wang C, Tang KB, Xie Y, Qian YT (1999) Mat Res Bull 34:433Google Scholar
  118. 118.
    Cai P, Yang Z, Wang C, Xia P, Qian Y (2006) Materials Letters 60:410Google Scholar
  119. 119.
    Choi J, Gillan EG (2005) Inorg Chem 126:5372Google Scholar
  120. 120.
    Gu Y, Guo F, Qian Y, Zheng H, Yang Z (2003) Mater Lett 57:1679Google Scholar
  121. 121.
    Gu Y, Li Z, Chen L, Ying Y, Qian Y (2003) Mater Res Bull 38:1119Google Scholar
  122. 122.
    Shi L, Gu Y, Chen L, Qian Y, Yang Z, Ma J (2003) Solid State Comm 128:5Google Scholar
  123. 123.
    Gu Y, Chen L, Qian Y, Zhang W, Ma J (2005) J Am Ceram Soc 88:225Google Scholar
  124. 124.
    Xie Y, Su HL, Qian XF, Liu XM, Qian YT (2000) J Solid State Chem 149:88Google Scholar
  125. 125.
    Gu Y, Chen L, Qian Y, Gu H (2003) J Mater Sci Lett 22:1463Google Scholar
  126. 126.
    Gu Y, Qian Y, Chen L, Zhou F (2003) J Alloys Compd 352:325Google Scholar
  127. 127.
    Hu G, Cheng M, Ma D, Bao X (2003) Chem Mater 15:1470Google Scholar
  128. 128.
    Wang W, Kunnar S, Huang JY, Wang DZ, Ren ZF (2005) Nanotechnology 16:21Google Scholar
  129. 129.
    Yang H, Mercier P, Wang SC, Akins DL (2005) Chem Phys Lett 416:18Google Scholar
  130. 130.
    Basavalingu B, Byrappa K, Yoshimura M, Madhusudan P, Dayananda AS (2006) J Mater Sci 41:1465Google Scholar
  131. 131.
    Liu XY, Zeng JH, Zhang SY, Zheng RB, Liu XM, Qian YT (2003) Chem Phys Lett 374:348Google Scholar
  132. 132.
    Wei G, Deng Y, Lin YH, Nan CW (2003) Chem Phys Lett 372:590Google Scholar
  133. 133.
    Hou Y, Kondoh H, Che R, Takeguchi M, Ohta T (2006) Small 2:235Google Scholar
  134. 134.
    Laye RH, McInnes EJL (2004) Eur J Inorg Chem 14:2811Google Scholar
  135. 135.
    Sanchez C, Arribart H, Guille MM (2005) Nat Mater 4:277CrossRefGoogle Scholar
  136. 136.
    Miyazawa T, Ohtsu S, Nakagawa Y, Funazukuri T (2006) J Mater Sci 41:1489Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.ICMCB, CNRS, University Bordeaux 1 “Sciences and Technologies”Pessac CedexFrance

Personalised recommendations