Journal of Materials Science

, Volume 42, Issue 23, pp 9827–9835 | Cite as

The structure and properties of silver-doped phosphate-based glasses

  • I. Ahmed
  • E. A. Abou Neel
  • S. P. Valappil
  • S. N. Nazhat
  • D. M. Pickup
  • D. Carta
  • D. L. Carroll
  • R. J. Newport
  • M. E. Smith
  • J. C. KnowlesEmail author


An undoped and two silver-doped (0, 3 and 5 mol% Ag) phosphate glass compositions were investigated for their structure and properties. These compositions had in a previous study been investigated for their antimicrobial properties, and were found to be extremely potent at inhibiting the micro-organisms tested. Thermal, X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and X-ray absorption Near Edge Structure (XANES) studies were used to elucidate the structure of the compositions investigated, whilst degradation and ion release studies were conducted to investigate their properties. No significant differences were found between the T g values of the silver containing glasses, while XRD analysis revealed the presence of a NaCa(PO3)3 phase. NMR showed the dominance of Q2 species, and XANES studies revealed the oxidation state of silver to be in the +1 form. No correlation was seen between the degradation and cation release profiles observed, and the P3O 9 3− anion was the highest released anionic species, which correlated well with the XRD and NMR studies. Overall, it was ascertained that using Ag2SO4 as a precursor, and producing compositions containing 3 and 5 mol% Ag, the levels of silver ions released were within the acceptable cyto/biocompatible range.


Ag2O Nuclear Magnetic Resonance Study Ag3PO4 Ag2SO4 Silver Sulphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



EPSRC is thanked for funding the UCL-Kent-Warwick collaboration on phosphate biomaterials through grants GR/T21080, EP/C000714 and EP/C000633. M.E. Smith also thanks EPSRC and the University of Warwick for partial funding of the NMR infrastructure.


  1. 1.
    Clement J, Manero JM, Planell JA, Avila G, Martinez S (1999) J Mater Sci: Mater Med 10:729CrossRefGoogle Scholar
  2. 2.
    Ahmed I, Lewis MP, Olsen I, Knowles JC (2004) Biomaterials 25(3):491CrossRefGoogle Scholar
  3. 3.
    Franks K, Abrahams I, Georgiou G, Knowles JC (2001) Biomaterials 22:497CrossRefGoogle Scholar
  4. 4.
    Yu X, Day DE, Long GJ, Brow RK (1997) J Non-Cryst Solids 215:21CrossRefGoogle Scholar
  5. 5.
    Gilchrist T, Glasby MA, Healy DM, Kelly G, Lenihan DV, McDowall KL et al (1998) Br J Plastic Surg 51:231CrossRefGoogle Scholar
  6. 6.
    Lenihan DV, Carter AJ, Gilchrist T, Healy DM, Miller IA, Myles LM et al (1998) J Hand Surg (British and European Volume) 23B(5):588CrossRefGoogle Scholar
  7. 7.
    Drake CF, Allen WM (1985) Biochem Soc Trans 13:516Google Scholar
  8. 8.
    Burnie J, Gilchrist T (1981) Biomaterials 2(10):244CrossRefGoogle Scholar
  9. 9.
    Avent AG, Carpenter CN, Smith JD, Healy DM, Gilchrist T (2003) J Non-Cryst Solids 328:31CrossRefGoogle Scholar
  10. 10.
    Ahmed I, Ready D, Wilson M, Knowles JC (2006) J Biomed Mater Res 79A:618CrossRefGoogle Scholar
  11. 11.
    Brow RK (2000) J Non-Cryst Solids 263&264:1CrossRefGoogle Scholar
  12. 12.
    McKeown DA, Gan H, Pegg LL (2005) J Non-Cryst Solids 351:3826CrossRefGoogle Scholar
  13. 13.
    Fletcher DA, McMeeking RF, Parkin D (1996) J Chem Inf Comput Sci 36:746CrossRefGoogle Scholar
  14. 14.
    Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Biomaterials 25(16):3223CrossRefGoogle Scholar
  15. 15.
    Brow RK, Kirkpatrick RJ, Turner GL (1990) J Non-Cryst Solids 116:39CrossRefGoogle Scholar
  16. 16.
    Sipr O, Dalba G, Rocca F (2004) Phys Rev B 69:134201CrossRefGoogle Scholar
  17. 17.
    MacKenzie KJD, Smith ME (2002) Multinuclear solid-state NMR of inorganic materials. Pergamon Press, OxfordCrossRefGoogle Scholar
  18. 18.
    Ahmed I, Lewis MP, Nazhat SN, Knowles JC (2005) J Biomater Appl 20[July]:65Google Scholar
  19. 19.
    Ahmed I, Lewis MP, Knowles JC (2005) Phys Chem Glasses 46(6):547Google Scholar
  20. 20.
    Saravanapavan P, Gough JE, Jones JR, Hench LL (2004) Key Eng Mater 254–256:1087CrossRefGoogle Scholar
  21. 21.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res 52:662CrossRefGoogle Scholar
  22. 22.
    Bellantone M, Williams HD, Hench LL (2002) Antimicrob Agents Chemother 46(6):1940CrossRefGoogle Scholar
  23. 23.
    Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC et al (1998) J Mater Sci: Mater Med 9:129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • I. Ahmed
    • 1
  • E. A. Abou Neel
    • 1
  • S. P. Valappil
    • 1
  • S. N. Nazhat
    • 1
    • 2
  • D. M. Pickup
    • 3
  • D. Carta
    • 3
  • D. L. Carroll
    • 4
  • R. J. Newport
    • 3
  • M. E. Smith
    • 4
  • J. C. Knowles
    • 1
    Email author
  1. 1.Division of Biomaterials and Tissue EngineeringEastman Dental Institute, University College LondonLondonUK
  2. 2.Department of Mining, Metals, and Materials EngineeringMcGill UniversityQCCanada
  3. 3.School of Physical SciencesUniversity of KentCanterburyUK
  4. 4.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations