Journal of Materials Science

, Volume 42, Issue 23, pp 9756–9764 | Cite as

Modelling of grain size transition with alloy concentration in solidified Al–Si alloys

  • Xiangdong Yao
  • Arne K. Dahle
  • Cameron J. Davidson
  • David H. StJohn


The transition in grain size with Si content in Al–Si alloys has been systematically investigated by the Cellular Automaton-Finite control Volume Method (CAFVM) to understand the operating mechanisms for this behavior. Three aspects: growth restriction factor (GRF), the chemical driving force (CDF) and the constitutional undercooling (ΔT C ) have been demonstrated to affect the microstructure formation, and among them the ΔT C plays the most important role. Furthermore, it is also shown that the surface modification of the nucleant particles by silicon significantly influences the grain formation. However, the combined effects of the investigated factors on the grain size were not sufficiently strong to cause a grain size change similar to that observed experimentally. This implies that there could be other mechanisms that control the transition.


Cellular Automaton Silicon Concentration Nucleation Particle Growth Restriction Factor Columnar Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Flood SC, Hunt JD (1987) J Cryst Growth 82:543CrossRefGoogle Scholar
  2. 2.
    Maxwell I, Hellawell A (1975) Acta Metall 23:229CrossRefGoogle Scholar
  3. 3.
    Kurz W, Fisher DJ (1989) Fundamentals of solidification. Trans. Tech. Aedermannsdorf, SwitzerlandGoogle Scholar
  4. 4.
    Quested TE, Greer AL (2005) Acta Mater 53:4643CrossRefGoogle Scholar
  5. 5.
    Johnsson M, Backerud L (1996) Z Metallkd 87:216Google Scholar
  6. 6.
    Lee YC, Dahle AK, StJohn DH, Hutt JEC (1999) Mater Sci Eng A259:43Google Scholar
  7. 7.
    Hutt JE, StJohn DH (1998) Int J Cast Met Res 11:13Google Scholar
  8. 8.
    Hutt JE (2001) PhD Thesis, The University of QueenslandGoogle Scholar
  9. 9.
    Hutt J, StJohn DH, Hogan L, Dahle AK (1999) Mater Sci Technol 15:495CrossRefGoogle Scholar
  10. 10.
    Yao X, Dahle AK, Davidson CJ, StJohn DH (2006) J Mater Res 21:3009CrossRefGoogle Scholar
  11. 11.
    Dahle AK, Hutt JEC, Lee YC, StJohn DH (1999) AFS Trans 107:265Google Scholar
  12. 12.
    Rappaz M, Gandin Ch-A (1993) Acta Metall 41:345CrossRefGoogle Scholar
  13. 13.
    Kurz W, Giovanola B, Trivedi R (1986) Acta Metall 34:823CrossRefGoogle Scholar
  14. 14.
    Yao X, Dahle AK, Davidson CJ, StJohn DH, (2000) J Mater Sci (submitted)Google Scholar
  15. 15.
    Easton M, StJohn DH (1999) Metall Trans 30A:1613Google Scholar
  16. 16.
    Johnsson M (1993) PhD thesis, Stockholm University, StockholmGoogle Scholar
  17. 17.
    Spittle JA, Sadli S (1995) Mater Sci Technol 11:533Google Scholar
  18. 18.
    Yao X, Wang H, He B, Zhou X (2005) Mater Sci Forum 475–479:3141CrossRefGoogle Scholar
  19. 19.
    Yao X, He B, Wang H, Zhou X (2006) Int J Non-Linear Sci Numer Simulat 7:171Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xiangdong Yao
    • 1
  • Arne K. Dahle
    • 2
  • Cameron J. Davidson
    • 3
  • David H. StJohn
    • 2
  1. 1.School of EngineeringJames Cook UniversityTownsvilleAustralia
  2. 2.CRC for Metals and Manufacturing (CAST)University of QueenslandBrisbaneAustralia
  3. 3.CSIRO – Manufacturing and Infrastructure TechnologyKenmoreAustralia

Personalised recommendations