Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 10196–10202 | Cite as

Preparation of carbon microparticle assemblies from phenolic resin using an inverse opal templating method

  • Guoqing Guan
  • Katsuki KusakabeEmail author
  • Haruka Ozono
  • Masatsugu Taneda
  • Masato Uehara
  • Hideaki Maeda
Article

Abstract

Three-dimensionally (3D) well-ordered carbon microparticle assemblies with different particle morphologies were fabricated by infiltration of phenolic resin solution into SiO2 inverse opal structures and subsequent carbonization. The effect of the phenolic resin solution concentration and the carbonization temperature on the morphology of the fabricated carbon microparticles was investigated. At a carbonization temperature of 1000 °C, carbon microparticles with interlocked bridges were obtained when the concentration of phenolic resin solution is 40 wt% and hollow carbon microparticles with opened window channels were obtained at a concentration of 30–35 wt%. When the carbonization temperature was decreased to 500 °C, carbon microparticles with interlocked bridges also were observed, even when the phenolic resin concentration was 30 wt%. The structures and properties of the carbon microparticles and their assemblies were characterized using SEM, XRD, and N2 adsorption.

Keywords

PMMA Inverse Opal Carbonization Temperature Carbon Sphere Phenolic Resin Solution 

Notes

Acknowledgements

This study was supported by Japan Society for the Promotion of Science (JSPS).

References

  1. 1.
    Lee J, Kim J, Hyeon T (2006) Adv Mater 18:2073CrossRefGoogle Scholar
  2. 2.
    Wang Y, Liu Z, Han B, Huang Y, Yang G (2005) Langmuir 21:10846CrossRefGoogle Scholar
  3. 3.
    Ma X, Xu F, Du Y, Chen L, Zhang Z (2006) Carbon 44:158CrossRefGoogle Scholar
  4. 4.
    Gherghel L, Kubel C, Lieser G, Rader H, Mullen K (2002) J Am Chem Soc 124:13130CrossRefGoogle Scholar
  5. 5.
    Lei Z, Xiao Y, Dang L, You W, Hu G, Zhang J (2007) Chem Mater 19:477CrossRefGoogle Scholar
  6. 6.
    Wang Y, Su F, Lee JY, Zhao XS (2006) Chem Mater 18:1347CrossRefGoogle Scholar
  7. 7.
    Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Adv Funct Mater 15:547CrossRefGoogle Scholar
  8. 8.
    Fuertes AB (2003) J Mater Chem 13:3085CrossRefGoogle Scholar
  9. 9.
    Tosheva L, Parmentier J, Saadallah S, Vix-Guterl C, Valtchev V, Patarin J (2004) J Am Chem Soc 126:13624CrossRefGoogle Scholar
  10. 10.
    Su F, Zhao XS, Wang Y, Wang L, Lee JY (2006) J Mater Chem 16:4413CrossRefGoogle Scholar
  11. 11.
    Xia Y, Gates B, Yin Y, Lu Y (2000) Adv Mater 12:693CrossRefGoogle Scholar
  12. 12.
    Lopez C (2003) Adv Mater 15:1679CrossRefGoogle Scholar
  13. 13.
    Braun PV, Rinne SA, Santamaria G (2006) Adv Mater 18:2665CrossRefGoogle Scholar
  14. 14.
    Jiang P, Bertone JF, Colvin VL (2001) Science 291:453CrossRefGoogle Scholar
  15. 15.
    Yang SM, Coombs N, Ozin GA (2000) Adv Mater 12:1940CrossRefGoogle Scholar
  16. 16.
    Lei Z, Li J, Ke Y, Zhang Y, Zhang H, Li F, Xing J (2001) J Mater Chem 11:2930CrossRefGoogle Scholar
  17. 17.
    Yi GR, Moon JH, Manoharan VN, Pine DJ, Yang SM (2002) J Am Chem Soc 124:13354CrossRefGoogle Scholar
  18. 18.
    Wang H, Yu JS, Li XD, Kim DP (2004) Chem Commun 2352Google Scholar
  19. 19.
    Guan G, Kusakabe K, Ozono H, Taneda M, Uehara M, Maeda H (2007) Chem Eng J (in press), doi: https://doi.org/10.1016/j.cej.2007.04.028 CrossRefGoogle Scholar
  20. 20.
    Zhou Z, Yan Q, Su F, Zhao XS (2005) J Mater Chem 15:2569CrossRefGoogle Scholar
  21. 21.
    Su F, Zhao XS, Wang Y, Zeng J, Zhou Z, Lee JY (2005) J Phys Chem B 109:20200CrossRefGoogle Scholar
  22. 22.
    Centeno TA, Vilas JL, Fuertes AB (2004) J Membr Sci 228:45CrossRefGoogle Scholar
  23. 23.
    Cai Q, Huang ZH, Kang F, Yang JB (2004) Carbon 42:775CrossRefGoogle Scholar
  24. 24.
    Waterhouse G, Waterlang MR (2007) Polyhedron 26:356CrossRefGoogle Scholar
  25. 25.
    Bolhuis PG, Frenkel D, Mau SC, Huse DA (1997) Nature 388:235CrossRefGoogle Scholar
  26. 26.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure & Appl Chem 57:603CrossRefGoogle Scholar
  27. 27.
    Funabiki K, Nakamura M, Tsuriya M (1981) Thermosetting Resins 2:220 (in Japanese)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Guoqing Guan
    • 1
  • Katsuki Kusakabe
    • 1
    Email author
  • Haruka Ozono
    • 1
    • 2
  • Masatsugu Taneda
    • 1
  • Masato Uehara
    • 2
  • Hideaki Maeda
    • 2
  1. 1.Department of Living Environmental ScienceFukuoka Women`s UniversityHigashi-ku, FukuokaJapan
  2. 2.Nanotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tosu, SagaJapan

Personalised recommendations