Journal of Materials Science

, Volume 42, Issue 23, pp 9689–9695 | Cite as

Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites

  • Yılmaz Simsek
  • Lutfi Ozyuzer
  • A. Tugrul Seyhan
  • Metin Tanoglu
  • Karl Schulte


The aim of this study is to investigate temperature dependence of electrical conductivity of carbon nanotube (CNT)/polyester nanocomposites from room temperature to 77 K using four-point probe test method. To produce nanocomposites, various types and amounts of CNTs (0.1, 0.3 and 0.5 wt.%) were dispersed via 3-roll mill technique within a specially formulized resin blend of thermoset polyesters. CNTs used in the study include multi walled carbon nanotubes (MWCNT) and double-walled carbon nanotubes (DWCNT) with and without amine functional groups (–NH2). It was observed that the incorporation of carbon nanotubes into resin blend yields electrically percolating networks and electrical conductivity of the resulting nanocomposites increases with increasing amount of nanotubes. However, nanocomposites containing amino functionalized carbon nanotubes exhibit relatively lower electrical conductivity compared to those with non-functionalized carbon nanotubes. To get better interpretation of the mechanism leading to conductive network via CNTs with and without amine functional groups, the experimental results were fitted to fluctuation-induced tunneling through the barriers between the metallic regions model. It was found that the results are in good agreement with prediction of proposed model.


Carbon Nanotubes Percolation Threshold Filler Content Polyester Resin Resin System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors acknowledge the financial support from TÜBITAK-JÜLİCH 5 Project. Also, L.O. acknowledges support from the Turkish Academy of Sciences, in the framework of the Young Scientist Award Program (LO/TUBA-GEBIP/2002-1-17).


  1. 1.
    Iijima S (1991) Nature (London) 354:56CrossRefGoogle Scholar
  2. 2.
    Balasubramanian K, Burghard M (2005) Small 1(2):180CrossRefGoogle Scholar
  3. 3.
    Khare R, Bose S (2005) J Min Mater Character Eng 4:31Google Scholar
  4. 4.
    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287:637CrossRefGoogle Scholar
  5. 5.
    Allaoui A, Bai S, Cheng HM, Bai JB (2002) Compos Sci Technol 62:1993CrossRefGoogle Scholar
  6. 6.
    Kim P, Shi L, Majumdar A, Maceuen PL (2001) Phys Rev Lett 87:5502Google Scholar
  7. 7.
    Martin CA, Sandler JKW, Windle AH, Schwarz MK, Bauhofer W, Schulte K, Shaffer MSP (2005) Polymer 46:877CrossRefGoogle Scholar
  8. 8.
    Sandler J, Schaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40:5967CrossRefGoogle Scholar
  9. 9.
    Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Macromolecules 37:9048CrossRefGoogle Scholar
  10. 10.
    Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Polymer 47:2036CrossRefGoogle Scholar
  11. 11.
    Kymakis E, Alexandaou I, Amaratunga GAJ (2002) Synthetic Met 127:59CrossRefGoogle Scholar
  12. 12.
    Astorga HR, Mendoza D (2005) Opt Mater 27:1228CrossRefGoogle Scholar
  13. 13.
    Sandler JKW, Kirk JE, Kinloch IA, Schaffer MSP, Windle AH (2003) Polymer 44:893CrossRefGoogle Scholar
  14. 14.
    Jiang X, Bin Y, Matsuo M (2005) Polymer 46:7418CrossRefGoogle Scholar
  15. 15.
    Sheng P (1980) Phys Rev B 21:2180CrossRefGoogle Scholar
  16. 16.
    Bockrath M, Cobden DH, Lu J, Rinzler AG, Smalley RE, Balemts L, Mcquen PL (1999) Nature 397:598–601CrossRefGoogle Scholar
  17. 17.
    Mischenko EG, Andreev AV, Glazman LI (2001) Phys Rev Lett 87:246801CrossRefGoogle Scholar
  18. 18.
    Meyorsan B, Smith FW (1980) Solid State Commun 34:531CrossRefGoogle Scholar
  19. 19.
    Mott NF, Davis EA (1979) In: Electronic processes in Non-Crystalline Materials Clarendon, Oxford, p 231Google Scholar
  20. 20.
    Kim GT, Jhang SH, Park JG, Park YW, Roth S (2001) Synthetic Met 117:123CrossRefGoogle Scholar
  21. 21.
    Sichel EK, Sheng P, Gittlemann JI, Bozowski S (1981) Phys Rev B 24:6131CrossRefGoogle Scholar
  22. 22.
    Kymakis E, Amaratunga GAJ (2006) J Appl Phys 99:084302CrossRefGoogle Scholar
  23. 23.
    Thostenson ET, Chouj TW (2003) Phys D: Appl Phys 36:573–582CrossRefGoogle Scholar
  24. 24.
    Bajpai A, Nigam AK (2007) Phys Rev B 75:064403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yılmaz Simsek
    • 1
  • Lutfi Ozyuzer
    • 1
  • A. Tugrul Seyhan
    • 2
  • Metin Tanoglu
    • 2
  • Karl Schulte
    • 3
  1. 1.Department of PhysicsIzmir Institute of TechnologyIzmirTurkey
  2. 2.Department of Mechanical EngineeringIzmir Institute of TechnologyIzmirTurkey
  3. 3.Polymer CompositesTechnische Universität Hamburg-Harburg (TUHH)HamburgGermany

Personalised recommendations