Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8377–8380 | Cite as

Oxidation resistance of multi-walled carbon nanotubes purified with sulfuric and nitric acids

  • X. X. ZhangEmail author
  • C. F. Deng
  • R. Xu
  • D. Z. Wang
Letter

Discovered by Iijima in 1991 [1], carbon nanotubes (CNTs) have been attracting increasing research interests due to their exceptional physical, chemical and mechanical properties. CNTs have shown application potentials in the field of composite reinforcements, display panels, nano-devices and hydrogen storage [2]. A number of research efforts [3, 4, 5, 6, 7, 8, 9] have focused on the purification of CNTs because as-prepared CNTs often contain impurities, such as amorphous carbon, catalyst metals, and fullerene or graphite particles. Among the abundant purification methods, refluxing in concentrated H2SO4/HNO3 (3:1) have been considered facile for the selective removal of impurities from CNTs with little destruction of tube walls [3, 4].

In some cases, high temperature gasification is needed after CNTs are refluxed in H2SO4 and/or HNO3. Delpeux et al. [5] treated single walled carbon nanotubes (SWCNTs) under CO2at 525 °C in order to remove the debris of disordered carbon after SWCNTs...

Keywords

Fullerene Gasification Oxidation Resistance Amorphous Carbon Catalyst Metal 

Notes

Acknowledgement

Project supported by development program for outstanding young teachers in Harbin Institute of Technology is greatly achnowledged.

References

  1. 1.
    Iijima S (1991) Nature 56Google Scholar
  2. 2.
    Zhu HW, Chen A, Ma ZQ et al (2000) J Mater Sci Lett 19:1237CrossRefGoogle Scholar
  3. 3.
    Kim B, Sigmund WM (2004) Langmuir 20:8239CrossRefGoogle Scholar
  4. 4.
    Murphy H, Papakonstantinou P, Okpalugo TIT (2006) J Vac Sci Technol B 24:715CrossRefGoogle Scholar
  5. 5.
    Delpeux S, Szostak K, Frackowiak E et al (2005) Chem Phys Lett 404:374CrossRefGoogle Scholar
  6. 6.
    Valentini F, Amine A, Orlanducci S et al (2003) Anal Chem 75:5413CrossRefGoogle Scholar
  7. 7.
    Zhang M, Yukasaka M, Iijima S (2004) J Phys Chem B 108:149CrossRefGoogle Scholar
  8. 8.
    Huang W, Wang Y, Luo GH et al (2003) Carbon 41:2585CrossRefGoogle Scholar
  9. 9.
    Zhang XX, Deng CF, Wang DZ et al (2005) Trans Nonferrous Met Soc China 15:240Google Scholar
  10. 10.
    Hasan MA, Zaki MI, Kumari K et al (1998) Thermochim Acta 320:23CrossRefGoogle Scholar
  11. 11.
    Ajayan PM, Ebbesen TW, Ichihashi T et al (1993) Nature 362:522CrossRefGoogle Scholar
  12. 12.
    Shimada T, Yanase H, Morishita K et al (2004) Carbon 42:1635CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinP.R. China

Personalised recommendations