Journal of Materials Science

, Volume 42, Issue 23, pp 9713–9716 | Cite as

Ab initio study on fracture toughness of Ti0.75X0.25C ceramics

  • Kuiying ChenEmail author
  • Mariusz Bielawski


Ab initio density functional theory calculations have been performed to evaluate the fracture toughness for selected Ti0.75X0.25C ceramics (X = Ta, W, Mo, Nb and V). The calculated Young’s modulus E, surface energy γ and fracture toughness K IC of pure TiC are in a good agreement with experimental data and other theoretical calculations. The results for Ti0.75X0.25C system show that alloying additions increase Young’s modulus, and all but vanadium increase surface energy. It was observed that tungsten has the most significant effect on increasing Young’s modulus, while tantalum on increasing surface energy of the Ti0.75X0.25C system. Surface energy plays a dominated role in determining the trend of fracture toughness. Overall, tantalum and tungsten are the most effective alloying elements in increasing the fracture toughness of Ti0.75X0.25C ceramics.


Fracture Toughness Tantalum Density Functional Theory Calculation Strain Energy Density Unit Cell Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed thanks to the New Initiative Fund from the Institute for Aerospace Research of the National Research Council Canada.


  1. 1.
    Paramesvaran VR, Immarigeon JP, Nagy D (1992) Surf Coat Technol 52:251CrossRefGoogle Scholar
  2. 2.
    Paramesvaran VR, Nagy D, Immarigeon JP, Chow D, Morphy D (1994) In: Koul AK, Paramesvaran VR, Immarigeon JP, Wallace W (eds) Advances in high temperature structural materials and protective coatings. Publication from National Research Council of Canada, Ottawa, pp 262–281Google Scholar
  3. 3.
    Tabakoff W (1999) Wear 233–235:200CrossRefGoogle Scholar
  4. 4.
    Klein M, Simpson G (2004) In: Proc. ASME Turbo Expo 2004, Vienna, Austria, pp 1–6Google Scholar
  5. 5.
    Evans AG (1979) In: Preece CM (ed) Treatise on materials science and technology, vol 16 erosion. Academic Press, NY, pp 1–67Google Scholar
  6. 6.
    Ruff W, Wiederhorn SM (1979) In: Preece CM (ed) Treatise on materials science and technology, vol 16 erosion. Academic Press, NY, pp 69–126Google Scholar
  7. 7.
    Kresse G, Furthmuller J (1996) Comput Math Sci 6:15CrossRefGoogle Scholar
  8. 8.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  9. 9.
    Kresse G, Joubert J (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  10. 10.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  11. 11.
    Boettger JC (1994) Phys Rev B 49:16798CrossRefGoogle Scholar
  12. 12.
    Ohring M (1992) The materials science of thin films. Academic Press, pp 568–570Google Scholar
  13. 13.
    Warren R (1978) Acta Metallur 26:1759CrossRefGoogle Scholar
  14. 14.
    Maerky C, Guillou M-O, Henshall JL, Hooper RM (1996) Mater Sci Eng A 209:329CrossRefGoogle Scholar
  15. 15.
    Ahuja R, Eriksson O, Wills JM, Johansson B (1996) Phys Rev B 53:3072CrossRefGoogle Scholar
  16. 16.
    Choy MM, Cook WR, Hearmon RFS, Jaffe H, Jerphagnon J, Kurtz SK, Liu T, Nelson DF (1979) In: Hellwege K-H, Hellwege AM (eds) Elastic, piezoelectric, ryoelectric, piezooptic, electrooptic constants and nonlinear dielectric susceptibilities of crystals. Springer-Verlag, BerlinGoogle Scholar
  17. 17.
    Dudiy SV, Lundqvist BI (2001) Phys Rev B 64:45403CrossRefGoogle Scholar
  18. 18.
    Arya A, Carter EA (2003) J Chem Phys 118:8982CrossRefGoogle Scholar
  19. 19.
    Haines J, Leger JM, Bocquillon G (2001) Annu Rev Mater Res 31:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Structures and Materials Performance Laboratory, Institute for Aerospace ResearchNational Research Council CanadaOttawaCanada

Personalised recommendations