Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9154–9162 | Cite as

Evolution of the electronic structure and properties of neutral and charged arsenic clusters

  • Ling GuoEmail author
Article

Abstract

Geometrical and electronic properties of Asn (n = 2–15) neutrals, cations and anions have been investigated using the density functional method of B3LYP. Berny structural optimization and frequency analyses are performed with the basis of 6–311 + G(d) for both neutrals and charged ions. The total energies of these clusters are then used to study the evolution of their binding energy, relative stability, and electronic properties as a function of size. The geometries are found to undergo a structural change from two dimensional to three-dimensional when the cluster contains four atoms. The geometrical changes are companied by corresponding changes in the nearest-neighbor distances and coordination numbers. In the whole size range, both ionization potential and electron affinity have the tendency of decrease when the number of As units in the cluster increases. The stability of clusters exhibits strong even-odd alternations with several magic numbers. The neutral Asn clusters are found to be even-numbered with local maxima at n = 2 and 4, while the cationic and anionic clusters are preferentially odd-numbered with As 3 + , As 5 + , and As 5 being the most stable ions according to the calculated results of the both energy gain and electronic properties.

Keywords

Lower Unoccupied Molecular Orbital Lower Unoccupied Molecular Orbital Anionic Cluster Neutral Cluster Charged Cluster 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), Youth Foundation of Shanxi (2007021009) and the Youth Academic Leader of Shanxi.

References

  1. 1.
    Ballone P, Jones RO (1994) J Chem Phys 100:4941CrossRefGoogle Scholar
  2. 2.
    Shen M, Schaefer III (1994) J Chem Phys 101:2261CrossRefGoogle Scholar
  3. 3.
    Yoo RK, Ruscic B, Berkowitz J (1992) J Chem Phys 96:6696CrossRefGoogle Scholar
  4. 4.
    Lippa TP, Xu SJ, Lyapustina SA (1998) J Chem Phys 109:10727CrossRefGoogle Scholar
  5. 5.
    Chi X, Tian S, Xu K (2002) Chin J Chem Phys 15:22Google Scholar
  6. 6.
    Jones RO, Ganteor G, Hunsicker S, Pieperhoff P (1995) J Chem Phys 103:9549CrossRefGoogle Scholar
  7. 7.
    Polak ML, Joe Ho, Gustav G, Lineberger WC (1992) J Chem Phys 97:8990CrossRefGoogle Scholar
  8. 8.
    Zhang H, Balasubramanian K (1992) J Chem Phys 97:3437CrossRefGoogle Scholar
  9. 9.
    Igel-Mann G, Stoll H, Preuss H (1993) Mol Phys 80:325CrossRefGoogle Scholar
  10. 10.
    Haser M, Schneide U, Ahlrichs R (1992) J Am Chem Soc 114:9551CrossRefGoogle Scholar
  11. 11.
    Scherer OJ (1990) Angew Chem Int Ed Engl 102:1137 CrossRefGoogle Scholar
  12. 12.
    Dimaio AJ, Rheingold AL (1990) Chem Rev 90:169CrossRefGoogle Scholar
  13. 13.
    Voako SH, Wilk L, Nusair M (1980) Can J Phys 58:1200CrossRefGoogle Scholar
  14. 14.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  15. 15.
    Beck AD (1993) J Chem Phys 98:5468CrossRefGoogle Scholar
  16. 16.
    Knight WD, Clemenger K, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141CrossRefGoogle Scholar
  17. 17.
    Rao BK, Jena P (1985) Phys Rev B 32:2058CrossRefGoogle Scholar
  18. 18.
    Bhasker ND, Frueholz RP, Klimeak CM, Cook RA (1987) Phys Rev B 36:4418CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghava-chari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) computer code GAUSSIAN98, revision A.6. Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  20. 20.
    Zhao J, Zhou X, Chen X, Wang J, Jellinek J (2006) Phys Rev B 73:115418CrossRefGoogle Scholar
  21. 21.
    Bosworth YM, Clark JH, Rippon DM (1973) J Mol Spectrosc 46:240CrossRefGoogle Scholar
  22. 22.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV constants of diatomic molecules. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  23. 23.
    Yi J (2000) Chem Phys Lett 325:269CrossRefGoogle Scholar
  24. 24.
    Lide DR (ed) (2000). In: Chemical rubber company handbook of chemistry and physics, 81st edn. CRC Press, Boca Raton, Florida, USAGoogle Scholar
  25. 25.
    Schiferl D, Barrett CS (1969) J Appl Crystallogr 2:30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Chemistry and Material ScienceShanxi Normal UniversityLinfenChina

Personalised recommendations