Journal of Materials Science

, Volume 42, Issue 22, pp 9176–9180 | Cite as

Transport study of a novel polyfluorene/poly(p-phenylenevinylene) copolymer by various mobility models

  • Lin KeEmail author
  • Ronald Cai Cheng Han
  • Chellappan Vijila
  • Soo Jin ChuaEmail author


The polyfluorene/poly(p-phenylenevinylene) copolymer based hole-only devices are fabricated and the current–voltage characteristics are measured as a function of temperature. The hole current is fitted well with space-charge limited and field-dependent mobility model, which provides a direct measurement of the hole mobility μ as a function of electric field E and temperature. The mobility is fitted with existing Gill’s model, Gaussian disorder model, correlated Gaussian disorder model and Brownian motion model. Energy hopping time and activation energy are obtained from Brownian motion model. Microscopic transport parameters are derived and a consistent picture of the influence of the molecular structure of the polymer on the charge transport is depicted. For the polyfluorene/poly(p-phenylenevinylene) copolymer, although with a high degree of irregularity in structure and larger energetic disorder, the two bulky structure favors charge delocalization and remove defect sites, results in a higher mobility. The results suggest space-charge limited and field-dependent mobility model combine with various mobility model, include Brownian motion model, is a useful technique to study charge transport in thin films with thicknesses close to those used in real devices.


Mobility Model Real Device Brownian Motion Model Space Charge Limited Conduction Gaussian Disorder Model 


  1. 1.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Nature London 347:539CrossRefGoogle Scholar
  2. 2.
    Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Bre das JL, LoÈ gdlund M, Salaneck WR (1999) Nature 397:121CrossRefGoogle Scholar
  3. 3.
    Shirota Y, Kageyama H (2007) Chem Rev 107:953CrossRefGoogle Scholar
  4. 4.
    Lina YJ, Chou WY, Lin ST (2006) Appl Phys Lett 88:071108CrossRefGoogle Scholar
  5. 5.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) Science 290:2123CrossRefGoogle Scholar
  6. 6.
    Samuel IDW, Turnbull GA (2007) Chem Rev 107:1272CrossRefGoogle Scholar
  7. 7.
    Karnutsch C, Pflumm C, Heliotis G, Demello JC, Bradley DDC, Wang J, Weimann T, Haug V, Gartner C, Lemmer U (2007) Appl Phys Lett 90:131104CrossRefGoogle Scholar
  8. 8.
    Conwell EM (1997) In: Nalwa HS (eds) Transport, photophysics, and applications, handbook of organic conductive molecules and polymers, vol. 4. Wiley, Chichester, UKGoogle Scholar
  9. 9.
    Ke L, Chua SJ, Cai RCH, Lin TT, Vijila C (2006) J Appl Phys 99:114512CrossRefGoogle Scholar
  10. 10.
    Malliaras GG, Scott JC (1999) J Appl Phys 85:7426CrossRefGoogle Scholar
  11. 11.
    Davids PS, Campbell IH, Smith DL (1997) J Appl Phys 82:6319CrossRefGoogle Scholar
  12. 12.
    Blom PWM, de Jong MJM, van Munster MG (1997) Phys Rev B 55:656CrossRefGoogle Scholar
  13. 13.
    Lee SH, Yasuda T, Tsutsui T (2004) J Appl Phys 95:3825CrossRefGoogle Scholar
  14. 14.
    Poplavskyy D, Nelson J, Bradley DDC (2004) Macromol Symp 212:415CrossRefGoogle Scholar
  15. 15.
    Kadashchuk A, Vakhnin A, Skryshevski Yu, Arkhipov VI, Emelianova EV, Bassler H (2003) Chem Phys 291:243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of Materials Research and EngineeringSingaporeSingapore
  2. 2.Center of OptoelectronicsNational University of SingaporeSingaporeSingapore

Personalised recommendations