Journal of Materials Science

, Volume 42, Issue 22, pp 9194–9199 | Cite as

Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation

  • Qi XiaoEmail author
  • Zhichun Si
  • Jiang Zhang
  • Chong Xiao
  • Zhiming Yu
  • Guanzhou Qiu


Sm3+-doped TiO2 nanocrystalline was synthesized by a sol–gel auto-combustion method and characterized by X-ray diffraction, Brunauer-Emmett-Teller method (BET), UV–vis diffuse reflectance spectroscopy (DRS), and also photoluminescence (PL) emission spectroscopy. The photocatalytic activity of Sm3+–TiO2 catalyst was evaluated by measuring degradation rates of methylene blue (MB) under either UV or visible light. The results showed that doping with the samarium ions significantly enhanced the photocatalytic activity for MB degradation under UV or visible light irradiation. This was ascribed to the fact that a small amount of samarium dopant simultaneously increased MB adsorption capacity and separation efficiency of electron-hole pairs. The results of DRS showed that Sm3+-doped TiO2 had significant absorption between 400 nm and 500 nm, which increased with the increase of samarium ion content. The adsorption experimental demonstrated that Sm3+–TiO2 had a higher MB adsorption capacity than undoped TiO2 and adsorption capacity of MB increased with the increase of samarium ion content. It is found that the stronger the PL intensity, the higher the photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions, so that the recombination of photoinduced electrons and holes could be effectively inhibited.


TiO2 Rutile Methylene Blue Photocatalytic Activity Samarium 



This work was supported by the Provincial Excellent PhD Thesis Research Program of Hunan (No.2004-141) and the Postgraduate Educational Innovation Engineering of Central South University (No.2006-48). The authors are grateful to Dr. Huang Suping for her encouragement and helpful discussion.


  1. 1.
    Hoffmann MR, Choi ST, Martin W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Rao TN, Truk DA (2000) J Photochem Photobiol C: Photochem Rev 1:1CrossRefGoogle Scholar
  3. 3.
    Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669CrossRefGoogle Scholar
  4. 4.
    Hattori A, Tokihisa Y et al (2000) J Electrochem Soc 147:2279CrossRefGoogle Scholar
  5. 5.
    Wang C, Xu B-Q (2005) J Solid State Chem 178:3500CrossRefGoogle Scholar
  6. 6.
    Iliev V, Tomova D et al (2006) Appl Catal B: Environ 63:266CrossRefGoogle Scholar
  7. 7.
    Kim DH, Woo SI et al (2005) Solid State Commun 136:554CrossRefGoogle Scholar
  8. 8.
    Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2005) Appl Catal A: Gen 285:181CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Xu H, Xu Y, Zhang H, Wang Y (2005) J Photochem Photobiol A: Chem 170:279CrossRefGoogle Scholar
  10. 10.
    Yan X, He J, Evans DG, Duan X, Zhu Y (2005) Appl Catal B: Environ 55:243CrossRefGoogle Scholar
  11. 11.
    Xie Y, Yuan C, Li X (2005) Mater Sci Eng B 117:325CrossRefGoogle Scholar
  12. 12.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefGoogle Scholar
  13. 13.
    Kamisaka H, Adachi T, Yamashita K (2005) J Chem Phys 123:084704CrossRefGoogle Scholar
  14. 14.
    Madhusudan Reddy K, Baruwati B, Jayalakshmi M, Mohan Rao M, Manorama SV (2005) J Solid Chem 178:3352CrossRefGoogle Scholar
  15. 15.
    Li W, Wang Y, Lin H, Ismat Shah S, Doren CP, Rykov SA, Chen JG, Barteau MA (2003) Appl Phys Lett 83:4143CrossRefGoogle Scholar
  16. 16.
    Xie YB, Yuan CW (2004) Appl Surf Sci 221:17CrossRefGoogle Scholar
  17. 17.
    Spurr RA, Myers H (1957) Anal Chem 29:760CrossRefGoogle Scholar
  18. 18.
    Yamashita H, Ichihashi Y, Zhang SG, Matrumura Y, Souma Y, Tatsumi T, Anpo M (1997) Appl Surf Sci 121/122:305CrossRefGoogle Scholar
  19. 19.
    Zhang LD, Mo CM (1995) Nanostruct Mater 6:831CrossRefGoogle Scholar
  20. 20.
    Danzhen L, Yi Z, Xianzhi F (2000) Chin J Mater Res 14:639Google Scholar
  21. 21.
    Jing L, Xin B, Yuan F, Xue L, Wang B, Fu H (2006) J Phys Chem B 110:17860CrossRefGoogle Scholar
  22. 22.
    Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545CrossRefGoogle Scholar
  23. 23.
    Miyagi T, Kamei M, Mitsuhashi T, Ishigaki T, Yamazaki A (2004) Chem Phys Lett 390:399CrossRefGoogle Scholar
  24. 24.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C: Photochem Rev 1:1CrossRefGoogle Scholar
  25. 25.
    Kamat PV (1993) Chem Rev 93:267CrossRefGoogle Scholar
  26. 26.
    Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
  27. 27.
    Liu H, Cheng S, Wu M, Wu H, Zhang J, Li W, Cao C (2000) J Phys Chem A 104:7016CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Qi Xiao
    • 1
    • 2
    Email author
  • Zhichun Si
    • 1
  • Jiang Zhang
    • 1
  • Chong Xiao
    • 1
  • Zhiming Yu
    • 2
  • Guanzhou Qiu
    • 1
  1. 1.School of Resources Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations