Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8071–8082 | Cite as

Diffusion-limited reactive wetting: effect of interfacial reaction behind the advancing triple line

  • F. HodajEmail author
  • O. Dezellus
  • J. N. Barbier
  • A. Mortensen
  • N. Eustathopoulos
Article

Abstract

Using the “dispensed drop” variant of the sessile drop technique, spreading kinetics of dilute Cu–Cr alloys on smooth vitreous carbon substrates are measured under helium microleak conditions. In this system, it is known that the drop spreading rate is controlled by diffusion of the reactive atom species (Cr) from the bulk liquid to the triple line, where wetting is induced by formation of an interfacial layer of chromium carbide. Microstructural characterization of rapidly cooled drops shows that growth of the interfacial reaction product layer continues behind the moving solid–liquid–vapor triple line. The spreading velocity is modeled by finite-difference numerical analysis of diffusion near the triple line in the presence of continued interfacial reaction, simplifying the growth rate as being constant and using realistic parameter values. We show that continued interfacial reaction explains the dependence of the triple line spreading rate on the instantaneous wetting angle that is observed in this system.

Keywords

Contact Angle Interfacial Reaction Reaction Layer Triple Line Vitreous Carbon 

Notes

Acknowledgment

This work was supported by core funding at the respective authors’ laboratories.

References

  1. 1.
    Naidich YV (1981) In: Cadenhead DA, Danielli JF (eds) Progress in surface and membrane science, vol 14. Academic Press, New York, p 380Google Scholar
  2. 2.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Elsevier, Kidlington, p 198, 317Google Scholar
  3. 3.
    Voitovitch R, Mortensen A, Hodaj F, Eustathopoulos N (1999) Acta Mater 47:1117CrossRefGoogle Scholar
  4. 4.
    Dezellus O, Hodaj F, Mortensen A, Eustathopoulos N (2001) Scripta Mater 44:2543CrossRefGoogle Scholar
  5. 5.
    Dezellus O, Hodaj F, Eustathopoulos N (2002) Acta Mater 50:4741CrossRefGoogle Scholar
  6. 6.
    Landry K, Eustathopoulos N (1996) Acta Mater 44:3923CrossRefGoogle Scholar
  7. 7.
    Mortensen A, Drevet B, Eustathopoulos N (1997) Scripta Mater 36:645CrossRefGoogle Scholar
  8. 8.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford, UK, pp 166–167, 431–434Google Scholar
  9. 9.
    Stone HL (1968) SIAM J Numer Anal 5:530CrossRefGoogle Scholar
  10. 10.
    Fries RJ, Cummings JE, Hoffma CG, Daily SA (1967) US Atomic Energy Comm Report, LA-3795-MS. pp 1–32Google Scholar
  11. 11.
    Oden LL, Gokcen NA (1992) Met Trans B 23B:453CrossRefGoogle Scholar
  12. 12.
    Van Loo FJJ, Bastin GF (1989) Metall Trans A 20A:403Google Scholar
  13. 13.
    Weast RC, Lide DR, Astle MJ, Beyer WH (1990) CRC handbook of chemistry and physics, 70th edn. CRC Press, Inc, Boca Raton, pp B-85, F-52Google Scholar
  14. 14.
    Nouveau traité de chimie minérale, Masson et Cie Editeurs. Tome XII, Paris (1959), p 367Google Scholar
  15. 15.
    Chase MW (ed) (1998) NIST JANAF Thermochemical Tables, 4th edn. American Society and American Institute of Physics for the National Institute of Standards and Technology. Monograph Nr. 9Google Scholar
  16. 16.
    Chakrabarti DJ, Laughlin DE (1984) Bull Alloy Phase Diagrams 5(1):59CrossRefGoogle Scholar
  17. 17.
    Mortimer DA, Nicholas M (1973) J Mat Sci 8:640CrossRefGoogle Scholar
  18. 18.
    Gülpen JH, Kodentsov AA, Van Loo FJJ (1995) Z Metallkunde 86:530Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • F. Hodaj
    • 1
    Email author
  • O. Dezellus
    • 2
  • J. N. Barbier
    • 1
  • A. Mortensen
    • 3
  • N. Eustathopoulos
    • 1
  1. 1.SIMAP – UMR CNRS 5266, INP Grenoble-UJFDomaine UniversitaireSaint Martin d’Heres, CedexFrance
  2. 2.LMI – UMR CNRS No. 5615Université Claude Bernard Lyon 1Villeurbanne CedexFrance
  3. 3.Laboratory for Mechanical MetallurgyEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations