Journal of Materials Science

, Volume 43, Issue 7, pp 2158–2162 | Cite as

Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes

  • Makoto Kobayashi
  • Koji Tomita
  • Valery Petrykin
  • Masahiro Yoshimura
  • Masato KakihanaEmail author


It was demonstrated that brookite-type titanium oxide can be directly synthesized by the hydrothermal treatment of novel water-soluble titanium complexes under basic conditions in the presence of an additive. In particular, single-phase brookite was synthesized from the titanium–glycolate complex at a pH of about 10 in the presence of excess NH3 aqueous solution or ethylenediamine, and powder thus obtained consisted of rod-like nanosized particles. It was suggested that the structures of titanium complexes are important for the formation of brookite.


Rutile Malic Acid Tartaric Acid Hydrothermal Treatment Glycolic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful for support by a CREST/JST grant. Part of this work was also supported by a Grant in Aid for Science Research, No. 18206069 from the Ministry of Education, Science and Culture, Japan.


  1. 1.
    Kominami H, Ishi Y, Kohno M, Honishi S, Kera Y, Ohtani B (2003) Catal Lett 91(1–2):41CrossRefGoogle Scholar
  2. 2.
    Yin S, Fujishiro Y, Wu J, Aki M, Sato T (2003) J Mater Pro Tech 137:45CrossRefGoogle Scholar
  3. 3.
    Yin S, Sato T (2004) J Photochem Photobio A Chem 163:1CrossRefGoogle Scholar
  4. 4.
    Yamoto T, Wada Y, Yin H, Sakata T, Mori H, Yanagida S (2002) Chem Lett 31(10):96Google Scholar
  5. 5.
    Yin S, Li R, He Q, Sato T (2002) Mater Chem Phys 75:76CrossRefGoogle Scholar
  6. 6.
    Cheng H, Zhenguo JM, Qi L (1995) Chem Mater 7:663CrossRefGoogle Scholar
  7. 7.
    Li X, Xiong Y, Li Z, Xie Y (2006) Inorg Chem 45(9):3493CrossRefGoogle Scholar
  8. 8.
    Music S, Gotic M, Ivanda M, Popovic S, Turkovic A, Trojko R, Sukulic A, Furic K (1997) Mater Sci Eng B 47:33CrossRefGoogle Scholar
  9. 9.
    Zhang YH, Chan CK, Porter J, Guo W (1998) J Mater Res 13:2602CrossRefGoogle Scholar
  10. 10.
    Potter A, Chnèac C, Trone E, Mazerolles L, Jolivet J-P (2001) J Mater Chem 11:1116CrossRefGoogle Scholar
  11. 11.
    Ye X, Sha J, Jiao Z, Zhang L (1997) Nano Struct Mater 8(7):919CrossRefGoogle Scholar
  12. 12.
    Nagase T, Ebina T, Iwasaki T, Hayashi H, Onodera Y, Chatterjee M (1999) Chem Lett 28(9):911CrossRefGoogle Scholar
  13. 13.
    Zheng Y, Shi E, Cui S, Li W, Hu X (2000) J Am Ceram Soc 83(10):2634CrossRefGoogle Scholar
  14. 14.
    Zheng Y, Shi E, Cui S, Li W, Hu X (2000) J Mater Sci Lett 19:1445CrossRefGoogle Scholar
  15. 15.
    Mitsuhashi T, Watanabe M (1978) Mineral J 9:236CrossRefGoogle Scholar
  16. 16.
    Kominami H, Kohno M, Kera Y (2000) J Mater Chem 10:1151CrossRefGoogle Scholar
  17. 17.
    Kakihana M, Tada M, Shiro M, Petrykin V, Osada M, Nakamura Y (2001) Inorg Chem 40:891CrossRefGoogle Scholar
  18. 18.
    Kakihana M, Tomita K, Petrykin V, Tada M, Sasaki S, Nakamura Y (2004) Inorg Chem 43:4546CrossRefGoogle Scholar
  19. 19.
    Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M (2006) Angew Chem Int Ed 45:2378CrossRefGoogle Scholar
  20. 20.
    Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM (1995) J Raman Spectrosc 26:57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Makoto Kobayashi
    • 1
  • Koji Tomita
    • 1
    • 2
  • Valery Petrykin
    • 1
  • Masahiro Yoshimura
    • 3
  • Masato Kakihana
    • 1
    Email author
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  2. 2.Department of Chemistry, School of ScienceTokai UniversityHiratsukaJapan
  3. 3.Materials and Structures Laboratory (Center for Materials Design)Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations