Journal of Materials Science

, Volume 42, Issue 22, pp 9245–9255 | Cite as

Nanostructured fumed metal oxides for thermal interface pastes

  • Chuangang Lin
  • D. D. L. Chung


Fumed metal oxides (13 nm aluminum oxide particles and 20–25 nm zinc oxide particles), which are in the form of porous agglomerates of nanoparticles, are effective as thermally conductive solid components in thermal pastes. They are as effective as carbon black, but are advantageous in their electrical non-conductivity. Without fuming, the oxides are less effective. By coating with silane, which decreases the viscosity of the paste, they are even more effective. The organic vehicle (polyol esters) and solid component content (2.4–4.0 vol.%) are chosen to attain conformability and spreadability. The use of either 4.0 vol.% silane coated fumed zinc oxide or 2.4 vol.% silane coated alumina gives thermal pastes that are more effective than commercial thermal pastes (Ceramique and Shin-Etsu). Fumed zinc oxide is superior to non-fumed zinc oxide in improving the thermal stability. Silane coating of the fumed zinc oxide further improves the thermal stability. Fumed alumina does not affect the thermal stability, but silane coated fumed alumina improves the thermal stability. Though silane coated fumed zinc oxide is superior to silane coated alumina in enhancing the thermal stability, it is slightly inferior in the phase separation tendency.


Carbon Black Zinc Oxide Solid Component Copper Block Silane Coating 


  1. 1.
    Wolff EG, Schneider DA (1998) Int J Heat Mass Transfer 41:3469CrossRefGoogle Scholar
  2. 2.
    Ouellette T, de Sorgo M (1985) Proc. Power Electron. Des. Conf. Power Sources Users Conference, Cerritos, CA, 134Google Scholar
  3. 3.
    Vogel MR (1995) Advances in electronic packaging, Proc. Int. Intersociety Electron. Packag. Conf., American Society of Mechanical Engineers, New York, NY, vol 10-2, p 989Google Scholar
  4. 4.
    Sartre V, Lallemand M (2001) Appl Therm Eng 21:221CrossRefGoogle Scholar
  5. 5.
    Grujicic M, Zhao CL, Dusel EC (2005) Appl Surf Sci 246:290CrossRefGoogle Scholar
  6. 6.
    Chung DDL (2001) J Mater Eng Performance 10:56CrossRefGoogle Scholar
  7. 7.
    Xu Y, Luo X, Chung DDL (2002) J Electron Packaging 124:188CrossRefGoogle Scholar
  8. 8.
    Leong C-K, Chung DDL (2003) Carbon 41:2459CrossRefGoogle Scholar
  9. 9.
    Leong C-K, Chung DDL (2004) Carbon 42:2323CrossRefGoogle Scholar
  10. 10.
    Leong C-K, Aoyagi Y, Chung DDL (2006) Carbon 44(3):435CrossRefGoogle Scholar
  11. 11.
    Howe TA, Leong C-K, Chung DDL (2006) J Electron Mater 35(8):1628CrossRefGoogle Scholar
  12. 12.
    Leong C-K, Aoyagi Y, Chung DDL (2005) J Electron Mater 34(10):1336CrossRefGoogle Scholar
  13. 13.
    Gaydardzhiev S, Ay P (2006) J Mater Sci 41(16):5257CrossRefGoogle Scholar
  14. 14.
    Batz-Sohn C (2003) Part Part Syst Char 20(6):370 (Volume Date 2004)CrossRefGoogle Scholar
  15. 15.
    Gun’ko VM, Zarko VI, Leboda R, Chibowski E (2001) Adv Colloid Interface Sci 91(1):1CrossRefGoogle Scholar
  16. 16.
    Mun JH, Sim IC (2002) Republ. Korean Kongkae Taeho Kongbo KR 2002060926Google Scholar
  17. 17.
    Kim BM (2002) Republ. Korean Kongkae Taeho Kongbo KR 2002061469Google Scholar
  18. 18.
    De Kretser RG, Scales PJ, Boger DV (1998) Colloid Surface A 137:307CrossRefGoogle Scholar
  19. 19.
    Prasher R (2001) J Heat Transfer 123:969CrossRefGoogle Scholar
  20. 20.
    Alexander W, Shackelford J (2001) CRC materials science and engineering handbook. CRC Press LLC, Boca Raton, FL, USA, p 284Google Scholar
  21. 21.
    Shenoy AV (1999) Rheology of filled polymer systems. Kluwer Academic Publishers, Norwell, MA, USA, p 80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Composite Materials Research LaboratoryUniversity at Buffalo, State University of New YorkBuffaloUSA

Personalised recommendations