Journal of Materials Science

, Volume 42, Issue 22, pp 9267–9275 | Cite as

Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers

  • David Koloušek
  • Jiri BrusEmail author
  • Martina Urbanova
  • Jana Andertova
  • Vaclav Hulinsky
  • Jindřich Vorel


In this contribution, we present the preparation and structural characterization of a new type of alternative (sodium silicate-free) geopolymer system. A new procedure of geopolymer synthesis based on the preparation of a reactive geopolymer precursor by direct calcinations of low-quality kaolin with Na/K hydroxides is introduced. The subsequent formation of geopolymer matrix does not require activation by alkaline silicate solution. The compact and hardened material was prepared only by adding a small amount of water. Besides the introduction of a new synthetic procedure, we focused also on the systematic study of chemical structure, mineralogical composition and hydrothermal stability of the prepared geopolymer systems as seen by solid-state NMR spectroscopy and powder X-ray diffraction (XRD). An important part of our contribution is the demonstration of structural and mineralogical changes induced by hydrothermal treatment and long-term aging of the prepared geopolymers. It was found that redistribution of basic structural units (SiO 4 4− and AlO 4 5− ) and gradual formation of zeolite fractions can be related to the observed changes in mechanical properties. Up to a certain level, the presence of zeolites enhances the mechanical properties of the prepared geopolymer systems. However, the additional formation of a new generation of zeolite fractions, occurring over the long-term period causes an inversion of this trend and a dramatic reduction of mechanical strength. Nevertheless, formation of the geopolymer matrix by alkaline and thermal activation of low-quality kaolin has the potential to be used in ecological problems solving (solidification of powdered and dangerous waste materials).


Zeolite Geopolymer Metakaolinite Geopolymer Matrix Geopolymer Material 



We thank the Ministry of Education, Youth and Sports for financial support (grant No. 2B06120).


  1. 1.
    Davidovits J (1991) J Therm Analysis 37:1633CrossRefGoogle Scholar
  2. 2.
    Davidovits J (1994) J Mater Educ 16:91Google Scholar
  3. 3.
    Davidovits J (1982) Mineral polymers and methods of making them. U.S. Patent 4,349,386Google Scholar
  4. 4.
    Davidovits J et al (1985) Early high-strength mineral polymer. U.S. Patent 4,509,985Google Scholar
  5. 5.
    Davidovits J (1984) Synthetic mineral polymer compound of the silicoaluminates family and preparation process. U.S. Patent 4,472,199Google Scholar
  6. 6.
    Khale D, Chaudhary R (2007) J Mater Sci 42:729CrossRefGoogle Scholar
  7. 7.
    Singh PS, Bastow T, Trigg M (2005) J Mater Sci 40:3951CrossRefGoogle Scholar
  8. 8.
    Singh PS, Trigg M, Burgar I, Bastow T (2005) Mat Sci Eng A 396:392CrossRefGoogle Scholar
  9. 9.
    Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Int J Inorg Mat 2:309CrossRefGoogle Scholar
  10. 10.
    Phair JW, Van Deventer JSJ (2002) Int Miner Process 66:121CrossRefGoogle Scholar
  11. 11.
    Phair JW, Van Deventer JSJ (2002) Ind Eng Chem Res 41:4242CrossRefGoogle Scholar
  12. 12.
    Xu H, Van Deventer JSJ (2000) Int Miner Process 59:247CrossRefGoogle Scholar
  13. 13.
    Fletcher RA, MacKenzie KJD, Nicholson Catherine L, Shimada S (2005) J Eur Ceram Soc 25:1471CrossRefGoogle Scholar
  14. 14.
    Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) Min Eng 10:659CrossRefGoogle Scholar
  15. 15.
    Van Jaarsveld JGS, Van Deventer JSJ, Schwartzman A (1999) Min Eng 12:75CrossRefGoogle Scholar
  16. 16.
    Perera DS, Blackford MG, Vance ER, Hanna JV, Finnie KS, Nicholson CL (2004) Mat Res Soc Symp Proc, vol. 824. Materials Research SocietyGoogle Scholar
  17. 17.
    Barbosa VFF, MacKenzie KJD (2003) Mater Res Bull 38:319CrossRefGoogle Scholar
  18. 18.
    Barbosa VFF, MacKenzie KJD (2003) Mater Lett 57:1477CrossRefGoogle Scholar
  19. 19.
    Fernandez-Jimenez A, Galopu R, Terai T, Palomo A, Ikeda K (2006) J Non-Cryst Solids 352:2061CrossRefGoogle Scholar
  20. 20.
    Oudadesse H, Derrien AC, Lefloch M (2005) J Therm Anal Cal 82:323CrossRefGoogle Scholar
  21. 21.
    Duxson P, Lukey GC, Van Deventer JSJ (2006) J Non-Crys Solids 352:5541CrossRefGoogle Scholar
  22. 22.
    Brus J (2000) Solid-State Nucl Magn Reson 16:151CrossRefGoogle Scholar
  23. 23.
    Phair JW, Smith JD, Van Deventer JSJ (2003) Mater Lett 57:4356CrossRefGoogle Scholar
  24. 24.
    Duxson P, Lukey GC, Separovic F, Van Deventer JSJ (2005) Ind Eng Chem Res 44:832CrossRefGoogle Scholar
  25. 25.
    Brus J, Dybal J (2002) Macromolecules 35:10038CrossRefGoogle Scholar
  26. 26.
    Brus J (2002) J Sol-Gel Sci Technol 25:17CrossRefGoogle Scholar
  27. 27.
    MacKenzie KJD, Smith ME (2002) In: Multinuclear solid-state NMR of inorganic materials. Pergamon, Materiále Series 6, London, p 274Google Scholar
  28. 28.
    Lippmaa E, Magi M, Satnoson A, Engelhardt G, Grimmer A-R (1980) J Am Chem Soc 102:4889CrossRefGoogle Scholar
  29. 29.
    Provis JL, Lukey GC, Van Deventer JSJ (2005) Chem Mater 17:3075CrossRefGoogle Scholar
  30. 30.
    Lecomte I, Lie´geois M, Rulmont A, Cloots R (2003) J Mater Res 18:2571CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David Koloušek
    • 1
  • Jiri Brus
    • 2
    Email author
  • Martina Urbanova
    • 2
  • Jana Andertova
    • 1
  • Vaclav Hulinsky
    • 1
  • Jindřich Vorel
    • 3
  1. 1.Institute of Chemical TechnologyPrague 6Czech Republic
  2. 2.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  3. 3.J Gocar`s Secondary School of Civil EngineeringPrague 4Czech Republic

Personalised recommendations