Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9227–9233 | Cite as

On the feasibility of synthesizing complex perovskite ferroelectric ceramics via a B-site oxide mixing route

  • Bijun FangEmail author
  • Renbing Sun
  • Yuejin Shan
  • Keitaro Tezuka
  • Hideo Imoto
Article

Abstract

Several relaxor-based complex perovskite ferroelectric ceramics were synthesized by conventional solid-state reaction method via different routes, i.e., the B-site oxide mixing route, the straight calcination method and the columbite/wolframite precursor method. Structure analysis and physical properties measurements prove that the B-site oxide mixing route is efficient and feasible in the synthesizing of complex perovskite ferroelectrics since such a technique is superior in suppressing pyrochlore phases, stabilizing the perovskite structure, and improving the amount of perovskite phase as compared to the straight calcination method and the columbite/wolframite precursor method. The dielectric properties are improved correspondingly, namely exhibiting the largest value of dielectric maximum, the sharpest dielectric response peaks and the least frequency dispersion of dielectric properties in the ferroelectric ceramics prepared via the B-site oxide mixing route, which is considered as correlating with the amount of pyrochlore phases, ceramic density, grain size, and microstructure morphology of the ceramics synthesized.

Keywords

Perovskite Dielectric Property Dielectric Loss Nb2O5 Perovskite Structure 

Notes

Acknowledgments

The authors thank the Satellite Venture Business Laboratory of Utsunomiya University, Japan, and Jiangsu Polytechnic University, China, for financial support. One of the authors also thanks the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry for financial support.

References

  1. 1.
    Shrout TR, Halliyal A (1987) Am Ceram Soc Bull 66:704Google Scholar
  2. 2.
    Viehland D, Jang SJ, Cross LE, Wuttig M (1990) J Appl Phys 68:2916CrossRefGoogle Scholar
  3. 3.
    Fang B-J, Shan Y-J, Xu H-Q, Luo H-S, Yin Z-W (2004) Adv Funct Mater 2:169CrossRefGoogle Scholar
  4. 4.
    Bokov AA, Bing Y-H, Chen W, Ye Z-G, Bogatina SA, Raevski IP, Raevskaya SI, Sahkar EV (2003) Phys Rev B 68:052102CrossRefGoogle Scholar
  5. 5.
    Noheda B (2002) Curr Opin Solid State Mater Sci 6:27CrossRefGoogle Scholar
  6. 6.
    Ye Z-G (2002) Curr Opin Solid State Mater Sci 6:35CrossRefGoogle Scholar
  7. 7.
    Haumont R, Dkhil B, Kiat JM, Al-Barakaty A, Dammak H, Bellaiche L (2003) Phys Rev B 68:014114CrossRefGoogle Scholar
  8. 8.
    Saitoh S, Kobayashi T, Harada K, Shimanuki S, Yamashita Y (1998) IEEE Trans Ultrason Ferroelectr Freq Control 45:1071CrossRefGoogle Scholar
  9. 9.
    Park SE, Shrout TR (1997) IEEE Trans Ultrason Ferroelectr Freq Control 44:1140CrossRefGoogle Scholar
  10. 10.
    Fang B-J, Luo H, Xu H, He T, Yin Z (2001) Jpn J Appl Phys Part 2 40:L1377CrossRefGoogle Scholar
  11. 11.
    Luo H, Xu G, Xu H, Wang P, Yin Z (2000) Jpn J Appl Phys Part 1 39:5581CrossRefGoogle Scholar
  12. 12.
    Kanai H, Furukawa O, Nakamura S, Yamashita Y (1993) J Am Ceram Soc 76:451Google Scholar
  13. 13.
    Lee D-H, Kim N-K (1998) Mater Lett 34:299CrossRefGoogle Scholar
  14. 14.
    Ichinose N, Kato N (1994) Jpn J Appl Phys Part 1 33:5423CrossRefGoogle Scholar
  15. 15.
    Ichinose N, Natsume S, Yamashita Y (1999) J Eur Ceram Soc 19:1139CrossRefGoogle Scholar
  16. 16.
    Rao RMV, Halliyal A, Umarji AM (1996) J Am Ceram Soc 79:257CrossRefGoogle Scholar
  17. 17.
    Lei C, Chen K, Zhang X-W (2002) Mater Lett 54:8CrossRefGoogle Scholar
  18. 18.
    Swartz SL, Shrout TR (1982) Mater Res Bull 17:1245CrossRefGoogle Scholar
  19. 19.
    Orita M, Satoh H, Aizawa K, Ametani K (1992) Jpn. J Appl Phys Part 1 31:3261CrossRefGoogle Scholar
  20. 20.
    Liou Y-C, Shih C-Y, Yu C-H (2002) Jpn J Appl Phys Part 1 41:3829CrossRefGoogle Scholar
  21. 21.
    Liou Y-C, Tseng K-H (2003) Mater Res Bull 38:1351CrossRefGoogle Scholar
  22. 22.
    Chen J-H, Liou Y-C (2004) Ceram Int 30:157CrossRefGoogle Scholar
  23. 23.
    Fang B-J, Shan Y-J, Tezuka K, Imoto H (2005) J Mater Sci 40:6445, DOI: 10.1007/s10853-005-1711-7CrossRefGoogle Scholar
  24. 24.
    Fang B-J, Shan Y-J, Tezuka K, Imoto H (2006) J Eur Ceram Soc 26:867CrossRefGoogle Scholar
  25. 25.
    Kim B-G, Cho SM, Kim T-Y, Jang HM (2001) Phys Rev Lett 86:3404CrossRefGoogle Scholar
  26. 26.
    Park KB, Yoon KH (1993) Ferroelectrics 145:195CrossRefGoogle Scholar
  27. 27.
    Lee B-H, Min K-K, Kim N-K (2000) J Mater Sci 35:197, DOI: 10.1023/A: 1004773406645Google Scholar
  28. 28.
    Kassarjian MP, Newnham RE, Biggers JV (1985) Am Ceram Soc Bull 64:245Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Bijun Fang
    • 1
    Email author
  • Renbing Sun
    • 1
  • Yuejin Shan
    • 2
  • Keitaro Tezuka
    • 2
  • Hideo Imoto
    • 2
  1. 1.Department of Materials Science and EngineeringJiangsu Polytechnic UniversityChangzhouChina
  2. 2.Department of Applied Chemistry, Faculty of EngineeringUtsunomiya UniversityUtsunomiyaJapan

Personalised recommendations