Journal of Materials Science

, Volume 42, Issue 22, pp 9293–9299 | Cite as

Effect of the preparation methodology on some physical and electrochemical properties of Ti/IrxSn(1−x)O2 materials

  • Josimar Ribeiro
  • Paula D. P. Alves
  • Adalgisa R. de AndradeEmail author


The aim of this work was to prepare electrodes based on the Ti/IrxSn(1−x)O2 composition, as well as test their stability toward the chlorine evolution reaction (ClER). To this end, two different preparation routes were investigated: thermal decomposition of polymeric precursors (DPP) and standard decomposition using isopropanol as solvent (SD/ISO). A systematic investigation of the structural, morphological, and electrochemical properties of the anodes with a nominal composition of Ti/IrxSn(1−x)O2, prepared through the two different methodologies, was carried out. The oxide layer surface morphology, microstructure, and composition were investigated by Energy Dispersive X-ray Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) techniques prior to and after accelerated life tests. EDS analyses following total deactivation of the electrode gave evidence of a relatively large content of Ir in the coating. XRD results showed there was formation of solid solution between IrO2 and SnO2, and the degree of miscibility of these solutions is controlled by the preparation method. Thus, the DPP method led to phase separation and large interval of immiscibility between the oxides analyzed. On the other hand, the SD/ISO method led to formation of solid solution for all the investigated compositions. The SD/ISO method produced materials rich in Ir, so the electrode lifetime was much longer if compared with the DPP counterparts.


SnO2 Iridium IrO2 Accelerate Life Test Scanning Electron Microcopy 



A.R. de Andrade acknowledges the financial support to this work by FAPESP foundation. The scholarships granted by CAPES (P.D.P. Alves) and FAPESP (J. Ribeiro #02/06465–0) are greatly acknowledged.


  1. 1.
    Beer HB (1966) U. S. Patent. New York 3:199Google Scholar
  2. 2.
    Trasatti S (2000) Electrochim Acta 45:2377CrossRefGoogle Scholar
  3. 3.
    Morimitsu M, Otogawa R, Matsunaga M (2000) Electrochim Acta 46:401CrossRefGoogle Scholar
  4. 4.
    Trasatti S, Lodi G (1981) In: Trasatti S (ed) Electrode of conductive metallic oxides, part A. Elsevier, Amsterdam, p 521Google Scholar
  5. 5.
    Comninellis C, Vercesi GP (1991) J Appl Electrochem 21:335CrossRefGoogle Scholar
  6. 6.
    Ribeiro J, De Andrade AR (2004) J Electrochem Soc 151:D106CrossRefGoogle Scholar
  7. 7.
    Ardizzone S, Bianchi CL, Cappelletti G, Ionita M, Minguzzi A, Rondinini S, Vertova A (2006) J Electroanal Chem 589:160CrossRefGoogle Scholar
  8. 8.
    Forti JC, Olivi P, De Andrade AR (2001) Electrochim Acta 47:913CrossRefGoogle Scholar
  9. 9.
    Comninellis C, Vercesi GP (1991) J Appl Electrochem 21:136CrossRefGoogle Scholar
  10. 10.
    Ortiz PI, De Pauli CP, Trasatti S (2004) J New Mater Electrochem Syst 7:153Google Scholar
  11. 11.
    Roginskaya Y, Goldstein M, Morozova O, Glazunova L, Russ (2001) J Electrochem 37:1065Google Scholar
  12. 12.
    Coteiro RD, Teruel FS, Ribeiro J, De Andrade AR (2006) J Braz Chem Soc 17:771CrossRefGoogle Scholar
  13. 13.
    Handbook of chemistry and physics, 55th edn. C.P. INC. 1974–75, Clevend, OhioGoogle Scholar
  14. 14.
    Lassali TAF, Bulhões LOS, Abeid LMC, Boodts JFC (1997) J Electrochem Soc 144:3348CrossRefGoogle Scholar
  15. 15.
    Pechini MP, Adams N (1967) US Patent, 3,330,697:1Google Scholar
  16. 16.
    Olivi P, Pereira EC, Longo E, Varella JA, Bulhões LOS (1993) J Electrochem Soc 14:L81CrossRefGoogle Scholar
  17. 17.
    Terezo AJ, Pereira EC (1999) Electrochim Acta 44:4507CrossRefGoogle Scholar
  18. 18.
    Profeti D, Lassali TAF, Olivi P (2006) J Appl Electrochem 36:883CrossRefGoogle Scholar
  19. 19.
    Lassali TAF, Boodts JFC, Bulhoes LOS (2000) J Non-Crystalline Solids 273:129CrossRefGoogle Scholar
  20. 20.
    Garavaglia R, Mari CM, Trasatti S (1984) Surf Technol 23:41CrossRefGoogle Scholar
  21. 21.
    Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, California, p 102Google Scholar
  22. 22.
    Powder Diffraction File in: Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data. 1996: Pennsylvania. PDF-file: 43-1019 for IrO2 and 41-1445 for SnO2 Google Scholar
  23. 23.
    Nanni L, Polizzi S, Benedetti A, De Battisti A (1999) J Electrochem Soc 146:220CrossRefGoogle Scholar
  24. 24.
    Callister WD (1999) Materials science and engineering, 5a edn. John Wiley & Sons, USAGoogle Scholar
  25. 25.
    Huheey JE, Keiter EA, Keiter RL (1933) Inorganic chemistry—principles of structure and reactivity, 4th edn. HarperCollins, New York, USAGoogle Scholar
  26. 26.
    Alves PDP, Magali S, Tremiliosi-Filho G., De Andrade AR (2004) J Braz Chem Soc 15:626Google Scholar
  27. 27.
    Zanta CLP, De Andrade AR, Boodts JFC (2000) J Appl Electrochem 30:467CrossRefGoogle Scholar
  28. 28.
    Zanta CLP, De Andrade AR, Boodts JFC (1999) Electrochim Acta 44:3333CrossRefGoogle Scholar
  29. 29.
    Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2006) Electrochim Acta 51:3161CrossRefGoogle Scholar
  30. 30.
    Vázquez-Gómez L, Horváth E, Kristóf J, Rédey A, De Battisti A (2006) Appl Surf Sci 253:1178CrossRefGoogle Scholar
  31. 31.
    Lassali TAF, Boodts JFC, Bulhões LOS (2000) J Appl Electrochem 30:625CrossRefGoogle Scholar
  32. 32.
    Loucka T (1977) J Appl Electrochem 7:211CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Josimar Ribeiro
    • 1
  • Paula D. P. Alves
    • 1
  • Adalgisa R. de Andrade
    • 1
    Email author
  1. 1.Departamento de Química da Faculdade de Filosofia Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirao PretoBrazil

Personalised recommendations