Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9205–9209 | Cite as

A facile two-step hydrothermal route for the synthesis of γ-Fe2O3 nanocrystals and their magnetic properties

  • Hongliang ZhuEmail author
  • Deren YangEmail author
  • Luming Zhu
  • Hong Yang
  • Dalai Jin
  • Kuihong Yao
Article

Abstract

This paper proposes a facile two-step hydrothermal route for the synthesis of maghemite (γ-Fe2O3) nanocrystals. The synthesis route included two steps: (i) hydrothermal synthesis of Fe3O4 nanocrystals, and (ii) hydrothermal oxidation of the Fe3O4 nanocrystals to their γ-Fe2O3 counterpart. Phase transition from γ-Fe2O3 to hematite was studied by in situ XRD; the γ-Fe2O3 nanocrystals exhibited enhanced phase transition temperature (>600 °C). The magnetization curves revealed that the γ-Fe2O3 nanocrystals showed ferromagnetic behavior with high saturation magnetization of 68 emu/g at room temperature.

Keywords

Fe3O4 Hydrothermal Synthesis Hydrazine Hydrate Maghemite Ferromagnetic Behavior 

Notes

Acknowledgments

This work was supported by the Open Foundation Project of the State Key Lab of Silicon Materials (No. 200601). We also thank Prof Chunmu Feng (Zhejiang University) for PPMS measurements.

References

  1. 1.
    Zboril R, Mashlan M, Petridis D (2002) Chem Mater 14:969CrossRefGoogle Scholar
  2. 2.
    Osmond WP (1952) Proc Phys Soc Lond B65:121CrossRefGoogle Scholar
  3. 3.
    Osmond WP (1953) Proc Phys Soc Lond B66:265CrossRefGoogle Scholar
  4. 4.
    Yu L, Yin Y, Mayers BT, Xia Y (2002) Nano Lett 2:183CrossRefGoogle Scholar
  5. 5.
    Buioca CD, Iusan V, Stanci A, Zoller C (2002) J Magn Magn Mater 252:318CrossRefGoogle Scholar
  6. 6.
    Tartaj P, Serna CJ (2002) Chem Mater 14:4396CrossRefGoogle Scholar
  7. 7.
    Ortega D, Garitaonandia JS, Barrera-Solano C, Ramírez-del-Solar M, Blanco E, M Domínguez (2006) J Non-Cryst Solids 352:2801CrossRefGoogle Scholar
  8. 8.
    Xu Z, Zeng Q, Lu G, Yu A (2006) Chem Eng Sci 61:1027CrossRefGoogle Scholar
  9. 9.
    Bhatnagar SP, Rosensweig RE (1995) J Magn Magn Mater 149:198CrossRefGoogle Scholar
  10. 10.
    Gupta AK, Gupta M (2005) Biomaterials 26:3995CrossRefGoogle Scholar
  11. 11.
    Lu J, Yang S, Ng KM, Su CH, Yeh CS, Wu YN, Shieh DB (2006) Nanotechnology 17:5812CrossRefGoogle Scholar
  12. 12.
    Jing Z, Wang Y, Wu S (2006) Sensor Actuat B Chem 113:177CrossRefGoogle Scholar
  13. 13.
    Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) J Magn Magn Mater 194:185CrossRefGoogle Scholar
  14. 14.
    Chan DCF, Kirpotin DB, Bunn JPA (1993) J Magn Magn Mater 122:374CrossRefGoogle Scholar
  15. 15.
    Liu X, Fu S, Xiao H (2006) J Solid State Chem 179:1554CrossRefGoogle Scholar
  16. 16.
    Rockenberger J, Scher EC, Alivisatos AP (1999) J Am Chem Soc 121:11595CrossRefGoogle Scholar
  17. 17.
    Ni Y, Ge X, Zhang Z, Ye Q (2002) Chem Mater 14:1048CrossRefGoogle Scholar
  18. 18.
    Hyeon T, Lee SS, Park J, Chung Y, Na B (2001) J Am Chem Soc 123:12798CrossRefGoogle Scholar
  19. 19.
    Janot R, Guérard D (2002) J Alloy Comp 333:302CrossRefGoogle Scholar
  20. 20.
    Lee S, Jeong J, Shin S, Kim J, Kim J (2004) J Magn Magn Mater 282:147CrossRefGoogle Scholar
  21. 21.
    Mukadam MD, Yusuf SM, Sharma P, Kulshreshtha SK (2004) J Magn Magn Mater 272–276:1401CrossRefGoogle Scholar
  22. 22.
    Woo K, Lee JHJ (2004) J Magn Magn Mater 272–276:e1155CrossRefGoogle Scholar
  23. 23.
    Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A (2005) J Magn Magn Mater 285:296CrossRefGoogle Scholar
  24. 24.
    Kandori K, Ishikawa T (2004) J Colloid Interf Sci 272:246CrossRefGoogle Scholar
  25. 25.
    Chen D, Xu R (1998) J Solid State Chem 137:185CrossRefGoogle Scholar
  26. 26.
    Wang J, Sun J, Chen Q (2003) Mater Res Bull 38:1113CrossRefGoogle Scholar
  27. 27.
    Lian S, Kang Z, Wang E, Jiang M, Hu C, Xu L (2003) Solid State Commun 127:605CrossRefGoogle Scholar
  28. 28.
    Zheng Y, Cheng Y, Bao F, Wang Y (2006) Mater Res Bull 41:525CrossRefGoogle Scholar
  29. 29.
    Wan J, Chen X, Wang Z, Yang X, Qian Y (2005) J Cryst Growth 276:571CrossRefGoogle Scholar
  30. 30.
    Xuan S, Hao L, Jiang W, Gong X, Hu Y, Chen Z (2007) J Magn Magn Mater 308:210CrossRefGoogle Scholar
  31. 31.
    Belin T, Guigue-Millot N, Caillot T, Aymes D, Niepce JC (2002) J Solid State Chem 163:459CrossRefGoogle Scholar
  32. 32.
    Ennas G, Marongiu G, Musinu A, Falqui A, Ballirano P, Caminiti R (1999) J Mater Res 14:1570CrossRefGoogle Scholar
  33. 33.
    Clark SM, Prilliman SG, Erdonmez CK, Alivisatos AP (2005) Nanotechnology 16:2813CrossRefGoogle Scholar
  34. 34.
    Gnanaprakash G, Ayyappan S, Jayakumar T, Philip J, Raj B (2006) Nanotechnology 17:5851CrossRefGoogle Scholar
  35. 35.
    Berry FJ, Greaves C, Helgason O, McManus J (1999) J Mater Chem 9:223CrossRefGoogle Scholar
  36. 36.
    Lai J, Shafi KVPM, Loos K, Ulman A, Lee, Vogt T, Estournes C (2003) J Am Chem Soc 125:11470CrossRefGoogle Scholar
  37. 37.
    Cullity BD (1972) Introduction to magnetic materials reading. Addison-Wesley, MAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.State Key Lab of Silicon Materials Zhejiang UniversityHangzhouP.R. China
  2. 2.Center of Materials EngineeringZhejiang Sci-Tech UniversityXiasha University Town, HangzhouP.R. China

Personalised recommendations