Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9256–9261 | Cite as

Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by accumulative roll-bonding

  • M. Y. ZhanEmail author
  • Y. Y. Li
  • W. P. Chen
  • W. D. Chen
Article

Abstract

The as-rolled AZ31 Mg alloy sheets were subjected to accumulative roll-bonding (ARB) at 300 °C up to three cycles. The microstructure and macro- texture are investigated by means of optical microscopy and X-ray analysis. The mechanical properties are evaluated by micro-hardness and tensile tests. Very fine grain size of 2.4 μm could be achieved after three passes of 50% thickness reduction. The recrystallized structure was already formed after one cycle of ARB. ARB processing resulted in a significant increase of ductility and slight decrease of tensile strength of the AZ31 alloy sheet. Basal texture was notably weakened after ARB processing.

Keywords

Dynamic Recrystallization Alloy Sheet AZ31 Alloy Basal Texture Equal Channel Angular Extrusion 

Notes

Acknowledgments

This work is supported by China Postdoctoral Science Foundation, No. 20060400748 and by National Nature Science Foundation of China, No. 50575076.

References

  1. 1.
    Mordike BL, Ebert T (2001) Mater Sci Eng A302:37CrossRefGoogle Scholar
  2. 2.
    Agnew SR, Horton JA, Lillo TM, Brown DW (2004) Scripta Mater 50:377CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progress in Mater Sci 45:103CrossRefGoogle Scholar
  4. 4.
    Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47(2):579CrossRefGoogle Scholar
  5. 5.
    Yamashita A, Horita Z, Langdon TG (2001) Mater Sci Eng A300:142CrossRefGoogle Scholar
  6. 6.
    Huang X, Tsuji N, Hansen N (2003) Mater Sci Eng A340:265CrossRefGoogle Scholar
  7. 7.
    Tsuji N, Ueji R, Minamino Y (2002) Scripta Mater 47:69CrossRefGoogle Scholar
  8. 8.
    Tsuji N, Saito Y, Lee S-H et al (2003) Adv Eng Mater 5(5):338CrossRefGoogle Scholar
  9. 9.
    Perez-Prado MT, Del Valle JA, Ruano OA (2004) Scripta Mater 51:1093CrossRefGoogle Scholar
  10. 10.
    Del Valle JA, Perez-Prado MT, Ruano OA (2005) Mater Sci Eng A 410–411:353CrossRefGoogle Scholar
  11. 11.
    Mwembela A, Konopleva EB, McQueen HJ (1997) Scripta Mater 37:1789CrossRefGoogle Scholar
  12. 12.
    Meyers MA, Vohringer O, Lubarda VA (2001) Acta Mater 49:4025CrossRefGoogle Scholar
  13. 13.
    Karlik M, Homola P, Slámová M (2004) J Alloys and Compounds 378:322CrossRefGoogle Scholar
  14. 14.
    Kim HK, Kim WJ (2004) Mater Sci Eng A 385:300CrossRefGoogle Scholar
  15. 15.
    Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Scripta Mater 45:89CrossRefGoogle Scholar
  16. 16.
    Lee SH, Saito Y, Sakai T, Utsunomiya H (2002) Mater Sci Eng A325:228CrossRefGoogle Scholar
  17. 17.
    Agnew SR, Yoo MH, Tome CN (2001) Acta Mater 49:4277CrossRefGoogle Scholar
  18. 18.
    Ion SE, Humphreys FJ, White SH (1982) Acta Metal 30:1909CrossRefGoogle Scholar
  19. 19.
    Yang Q, Ghosh AK (2006) Acta Mater 54:5147CrossRefGoogle Scholar
  20. 20.
    Del Valle JA, Perez-Prado MT, Ruano OA (2003) Mater Sci Eng A355:68CrossRefGoogle Scholar
  21. 21.
    Perez-Prado MT, Del Valle JA, Ruano OA (2005) Mate Lett 59:3299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Y. Zhan
    • 1
    Email author
  • Y. Y. Li
    • 1
  • W. P. Chen
    • 1
  • W. D. Chen
    • 1
  1. 1.School of Mechanical EngineeringSouth China University of TechnologyGuangzhouP.R. China

Personalised recommendations