Journal of Materials Science

, Volume 42, Issue 22, pp 9415–9420 | Cite as

Effect of Tb substitution on the magnetic properties of exchange-biased Nd2Fe14B/Fe3B

  • S. Manjura HoqueEmail author
  • M. A. Hakim
  • F. A. Khan
  • N. H. Dan


Tb-substituted (Nd,Tb)2Fe14B/Fe3B nanocomposite ribbons have been synthesized by melt spinning of Nd3Tb1Fe76Cu0.5Nb1B18.5 alloys. Tb substitution has significantly enhanced the value of coercivity and Curie temperature. Highest value of coercivity has been obtained as 4.76 kOe for the sample annealed at 953 K for 10 min. Curie temperature of Tb substituted sample, Nd3Tb1Fe76Cu0.5Nb1B18.5 is 549 K while Curie temperature of the sample without Tb, Nd4Fe76Cu0.5Nb1B18.5 is 535 K. Recoil hysteresis loops measured along the major demagnetization curve are steep having small recoil loop area. Temperature dependence of coercivity, remanent ratio and maximum energy product have been measured for the sample annealed at 893 K and 923 K for 10 min. At 5 K, coercivity and maximum energy product of the sample annealed at 893 K for 10 min are 5.2 kOe and 11.5 MGOe respectively and the sample annealed at 923 K for 10 min are 6 kOe and 13.1 MGOe respectively.


Hysteresis Loop Remanence Hard Phase Anisotropy Field Spin Reorientation 



The authors acknowledge with deep sense of gratitude the support provided by Prof. Per Nordblad, Solid State Physics, Dept. of Eng. Sci., Uppsala University, Sweden. Financial support provided by the International Program for Physical Sciences, Uppsala University, Sweden is acknowledged. The authors acknowledge kind help provided by Prof. N. X. Phuc, Director Institute of Materials Science, Vietnamese Academy of Science and Technology. The authors also acknowledge the kind support provided by Dr. S. I. Bhuiyan, Chairman, Bangladesh Atomic Energy Commission and Engr. Rezaul Bari, Director, Atomic Energy Centre, Dhaka.


  1. 1.
    Kneller EF, Hawig R (1991) IEEE Trans Magn 27:3588CrossRefGoogle Scholar
  2. 2.
    Sagawa M, Fujimura S, Yamamoto H, Matsuura Y (1984) IEEE Trans Magn Mag-20:1584CrossRefGoogle Scholar
  3. 3.
    Jin ZQ, Okumura H, Hadjipanayis GC (2001) IEEE Trans Magn 37:2564CrossRefGoogle Scholar
  4. 4.
    Harland CL, Lewis L-H, Chen Z, Ma B-M (2004) J Magn Mag Mater 271:53CrossRefGoogle Scholar
  5. 5.
    Kang K, Lewis LH, Jiang JS, Bader SD (2005) J Appl Phys 98:113906CrossRefGoogle Scholar
  6. 6.
    Withanawasam L, Hadjipanayis GC, Krause RF (1994) J Appl Phys 75:6646CrossRefGoogle Scholar
  7. 7.
    Givord D, Tenaud P, Viadieu T (1986) J Appl Phys 60:3263CrossRefGoogle Scholar
  8. 8.
    Givord D, Li HS, Perrier R (1984) Solid State Commun 51:857CrossRefGoogle Scholar
  9. 9.
    Hadjipanayis GC, Hall C, Kim A (1987) IEEE Trans Magn 23:2533CrossRefGoogle Scholar
  10. 10.
    Hadjipanayis GC, Withanawasam L, Krause RF (1995) IEEE Trans Magn 31:3596CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Manjura Hoque
    • 1
    Email author
  • M. A. Hakim
    • 1
  • F. A. Khan
    • 2
  • N. H. Dan
    • 3
  1. 1.Materials Science DivisionAtomic Energy CenterDhakaBangladesh
  2. 2.Department of PhysicsBangladesh University of Engineering and TechnologyDhakaBangladesh
  3. 3.Institute of Materials ScienceVietnamese Academy of Science and TechnologyHanoiVietnam

Personalised recommendations