Advertisement

Journal of Materials Science

, Volume 42, Issue 22, pp 9262–9266 | Cite as

Synthesis and characterization of morphologically different high purity gallium oxide nanopowders

  • U. RambabuEmail author
  • N. R. Munirathnam
  • T. L. Prakash
  • B. Vengalrao
  • S. Buddhudu
Article

Abstract

High purity gallium oxide nanopowders have been synthesized by using a simple precipitation technique with calcination at elevated temperature. From the X-ray pattern, the phase purity of the synthesized powders was confirmed as β-Ga2O3. Elemental quantification (stoichiometry) of Ga2O3 was also examined from the X-ray energy dispersive analysis (EDAX). Based on the recorded Fourier Transform Infrared (FTIR) spectrum of Ga2O3, the IR bands due to Ga–O bond and crystal lattice vibrations have been identified in the wavenumber range 400–4,000 cm−1. From the measured SEM images, it is obvious to notice that the pH value has been playing a dominant role in obtaining morphologically different gallium oxide nanopowders. Thermogravimetric analysis reveals 8.3% of weight loss when the sample was heated to the temperature of 1,100 °C from the room temperature, which also shows a crystalline phase transformation. It is very interesting to report that a broad blue emission at 455 nm has been measured from the synthesized gallium oxide nanopowders.

Keywords

Gallium Ga2O3 Ambient Atmosphere Diethylene Glycole Gallium Nitride 

References

  1. 1.
    Tas AC, Majeswski PJ, Aldinger F (2002) J Am Ceram Soc 85(6):1421CrossRefGoogle Scholar
  2. 2.
    Zhang J, Liu Z, Lin C, Lin J (2005) J Crystal Growth 280:99CrossRefGoogle Scholar
  3. 3.
    Cheng B, Samulski ET (2001) J Mater Chem 11:2901CrossRefGoogle Scholar
  4. 4.
    Zhang J, Jiang F (2003) Chem Phys 289:243CrossRefGoogle Scholar
  5. 5.
    Hu JQ, Li Q, Meng XM, Lee CS, Lee ST (2002) J Phys Chem B106:9536CrossRefGoogle Scholar
  6. 6.
    Dai ZR, Pan ZW, Wang ZL (2002) J Phys Chem B106:902CrossRefGoogle Scholar
  7. 7.
    Xiang X, Cao CB, Zhu HS (2005) J Crystal Growth 279:122CrossRefGoogle Scholar
  8. 8.
    Laubengayer AW, Engle HR (1939) J Am Chem Soc 61:1210CrossRefGoogle Scholar
  9. 9.
    Ristic M, Popovic S, Music S (2005) Mater Lett 59:1227CrossRefGoogle Scholar
  10. 10.
    Berret P, Berthet P (1997) J Phys III France 7:483CrossRefGoogle Scholar
  11. 11.
    Sato T, Nakamura T (1982) J Chem Tech Biotechnol 32:469CrossRefGoogle Scholar
  12. 12.
    Pokrovski GS, Diakonov II, Benezeth P, Gurevich VM, Gavrichev KS, Gorbunov VE, Kandurand JL, Schott J, Khodakovsky IL (1997) Eur J Mineral 9:941CrossRefGoogle Scholar
  13. 13.
    Ahman J, Svensson G, Albertsson J (1996) Acta Crystalogr C52:1336CrossRefGoogle Scholar
  14. 14.
    Bashmakov IA, Kalinichenko YV, Platon VV, Rakhlin MY, Rodionov VE (1992) Inorg Mater 28:419Google Scholar
  15. 15.
    Fleischer M, Hollbauer L, Born E, Meixner H (1997) J Am Ceram Soc 80:2121CrossRefGoogle Scholar
  16. 16.
    Choi WB, Lee NS, Kim JM (2000) Adv Mater 12:746CrossRefGoogle Scholar
  17. 17.
    Huang CC, Yeh CS, Ho CJ (2004) J Phys Chem B108:4940CrossRefGoogle Scholar
  18. 18.
    Zhang J, Jiang FH, Zhang LD (2004) Phys Lett A322:201Google Scholar
  19. 19.
    Binet L, Gourier D (1998) J Phys Chem Solids 59:1241CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • U. Rambabu
    • 1
    Email author
  • N. R. Munirathnam
    • 1
  • T. L. Prakash
    • 1
  • B. Vengalrao
    • 2
  • S. Buddhudu
    • 2
  1. 1.High Purity Materials Laboratory, IDA Phase-IIICentre for Materials for Electronics Technology (C-MET)Cherlapally, HyderabadIndia
  2. 2.Department of PhysicsSri Venkateshwara UniversityTirupatiIndia

Personalised recommendations