Journal of Materials Science

, Volume 43, Issue 7, pp 2085–2103 | Cite as

Hydrothermal processing of materials: past, present and future

  • M. YoshimuraEmail author
  • K. Byrappa
Novel Routes of Advanced Materials Processing and Applications


The hydrothermal technique provides an excellent possibility for processing of advanced materials whether it is bulk single crystals, or fine particles, or nanoparticles. The advantages of hydrothermal technology have been discussed in comparison with the conventional methods of materials processing. The current trends in hydrothermal materials processing has been described in relation to the concept of soft solution processing, as a single-step low energy consuming fabrication technique. Also some recent developments in multi-energy processing of materials such as microwave-hydrothermal, mechanochemical-hydrothermal, electrochemical-hydrothermal, sonar-hydrothermal, etc. have been discussed. An overview of the past, present and future perspective of hydrothermal technology as a tool to fabricate advanced materials has been given with appropriate examples.


Hydrothermal Processing Hydrothermal Condition Gallium Nitride Bulk Single Crystal Hydrothermal Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Byrappa K (ed) (1990) Hydrothermal growth of crystals. Prog Cryst Grow Charact 21Google Scholar
  2. 2.
    Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology. Noyes Publications, NJ, USAGoogle Scholar
  3. 3.
    Schafthaul KFE (1845) Gelehrte Anzeigen Bayer Akal 20:557Google Scholar
  4. 4.
    Morey GW, Niggli P (1913) J Am Chem Soc 35:1086CrossRefGoogle Scholar
  5. 5.
    Bayer KJ (1887) cited by HABASHI F In: A textbook of hydrometallurgy. Libraire Universitaire du Quebec, Canada (1993), p 10Google Scholar
  6. 6.
    Byrappa K (2005) In: Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, LondonGoogle Scholar
  7. 7.
    Jelinski LW, Graedal TE, Laudise RA, McCall DW, Patel CKN (1992) Proc Natl Acad Sci 89:793CrossRefGoogle Scholar
  8. 8.
    Lencka MM, Andreko A, Riman RE (1995) J Am Ceram Soc 78:2609CrossRefGoogle Scholar
  9. 9.
    Hao Y, Teja AS (2003) J Mater Res 18:415CrossRefGoogle Scholar
  10. 10.
    Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS (2002) Solid State Ionics 151:393CrossRefGoogle Scholar
  11. 11.
    (a) Byrappa K, Yoshimura M (eds) (2006) A Novel Method of Advanced Materials Processing. J Mater Sci 41, pp 1294–1682. (b) Yamasaki N (2003) J Ceram Soc Jpn 111:709Google Scholar
  12. 12.
    Roy R (2006) Solvothermal as one example of multi-energy processing – history and current status, Plenary Talk, ISHR & ICSTR 2006, Sendai, Japan August 5–9Google Scholar
  13. 13.
    Lester E, Blood P, Li J, Poliakoff M (2006) Reactor geometry and supercritical water reactions, Invited Talk, ISHR & ICSTR 2006, Sendai, Japan August 5–9Google Scholar
  14. 14.
    Varma R (2006) In: Immediate energy savings via microwave usage in major materials technologies (D. Agarwal). The Spectrum 1:2Google Scholar
  15. 15.
    Somiya S (ed) (1983) Proc. Ist international symposium on hydrothermal reactions, 1982. Gakujutsu Bunken Fukyukai Publications, Tokyo, Japan, p 965Google Scholar
  16. 16.
    Roy R (1994) J Solid State Chem 111:11CrossRefGoogle Scholar
  17. 17.
    Roy R (1996) In: Proc. workshop on solvothermal and hydrothermal reactions. Sun Mess Kagawa, Japan, Jan. 22–24Google Scholar
  18. 18.
    Corliss JB (1979) J Geol Soc Lond 136:621CrossRefGoogle Scholar
  19. 19.
    Ekimov AI, Efros AL, Onushchenko AA (1985) Solid State Commun 56:921CrossRefGoogle Scholar
  20. 20.
    Mann S (ed) (1996) Biomimetic materials chemistry. Wiley-VCH, GermanyGoogle Scholar
  21. 21.
    Yoshimura M (1998) J Mater Res 13:796CrossRefGoogle Scholar
  22. 22.
    Yoshimura M, Suchanek WL, Byrappa K (2000) MRS Bull USA 25:17Google Scholar
  23. 23.
    Yoshimura M (2006) J Ceram Soc Jpn 114:888; J Mater Sci 41:1299Google Scholar
  24. 24.
    Demyanets LN, Li LE, Uvarova TG (2006) J Mater Sci 41:1439CrossRefGoogle Scholar
  25. 25.
    Ehrentraut D, Sato H, Kagamitani Y, Sato H, Yoshikawa A, Fukuda T (2006) Prog Cryst Grow Charact Mat 52:280CrossRefGoogle Scholar
  26. 26.
    Kortunova EV, Nikolaeva NG, Chvanski PP, Maltsev VV, Volkova EA, Koporulina EV, Leonyuk NI, Kuech TF (2007) J Mater Sci (this issue)Google Scholar
  27. 27.
    Sekiguchi T, Miyashita S, Obara K, Shishido T, Sakagami N (2000) J Crystal Growth 214/215:72CrossRefGoogle Scholar
  28. 28.
    DiLeo L, Romano D, Schaeffer L, Gersten B, Foster C, Gelabert MC (2004) J Crystal Growth 271:65CrossRefGoogle Scholar
  29. 29.
    Wang B, Callahan MJ, Bouthillette LO, Xu C, Suscavage MJ (2006) J Crystal Growth 287:381CrossRefGoogle Scholar
  30. 30.
    Ohara S, Mousavand T, Sasaki T, Umetsu M, Naka T, Adschiri T (2007) J Mater Sci (in press/this special edition)Google Scholar
  31. 31.
    Hou Y, Yang M, Pang G, Feng S (2007) J Mater Sci (in press/this special edition)Google Scholar
  32. 32.
    Dem’Yanets LN, Li L, Uvarova T, Mininzon Yu (2007) J Mater Sci (in press/this special edition)Google Scholar
  33. 33.
    Yuan F, Hu P, Yu L, Li S, Ke J (2007) J Mater Sci (in press/in this special edition)Google Scholar
  34. 34.
    Palmier D, Goiffon A, Capelle B, Detaint J, Philippot E (1996) J Crystal Growth 166:347CrossRefGoogle Scholar
  35. 35.
    Gleichmann H, Richert H, Hergt R, Barz R-U, Grassl M, Fornert P (2001) Cryst Res Technol 36:1181CrossRefGoogle Scholar
  36. 36.
    Mukai T, Nakamura S (1999) Jpn J Appl Phys 38:5735CrossRefGoogle Scholar
  37. 37.
    Hashimoto T, Fujito K, Saito M, Speck JS, Nakamura S (2005) Jpn J Appl Phys 44:L1570CrossRefGoogle Scholar
  38. 38.
    Wang B, Callahan MJ, Rakes KD, Bouthillette LO, Wang S-Q, Bliss DF, Kolis JW (2006) J Crystal Growth 287:367CrossRefGoogle Scholar
  39. 39.
    Ehrentraut D, Hoshino N, Kagamitani Y, Yoshikawa A, Fukuda T, Itoh H, Kawabata S (2007) J Mater Chem 17:886CrossRefGoogle Scholar
  40. 40.
    Demianets LN, Kostomarov DV (2001) Ann Chim Sci Mater 26:193CrossRefGoogle Scholar
  41. 41.
    Demazeau G (2007) J Mater Sci (in press/this special edition)Google Scholar
  42. 42.
    Ehrentraut D, Kagamitani Y, Yoshikawa A, Hoshino N, Itoh H, Kawabata S, Fujii K, Yao T (2007) J Mater Sci (in press/this special edition)Google Scholar
  43. 43.
    Callahan M, Wang BG, Rakes K, Bliss D, Bouthillette L, Suscavage M, Wang SQ (2006) J Mater Sci 41:1399CrossRefGoogle Scholar
  44. 44.
    Kong H, Wang J, Zhang H, Yin X, Zhang S, Liu Y, Cheng X, Gao L, Hu X, Jiang M (2003) J Crystal Growth 254:360CrossRefGoogle Scholar
  45. 45.
    Jang MC, Joo K, Auh KH (2000) J Ceram Process Res 1:1Google Scholar
  46. 46.
    Zhang SJ, Wang Q, Tian Z, Yin X, Zhang H, Li Y, Li S (2005) Opt Laser Technol 37:608CrossRefGoogle Scholar
  47. 47.
    Shimamura K, Takeda H, Kohno T, Fukuda T (1996) J Crystal Growth 163:388CrossRefGoogle Scholar
  48. 48.
    Uda S, Inaba H, Harada J, Hoshikawa K (2004) J Crystal Growth 271:229CrossRefGoogle Scholar
  49. 49.
    Uda S, Wang SQ, Konishi N, Inaba H, Harada J (2005) J Crystal Growth 275:251CrossRefGoogle Scholar
  50. 50.
    Assoud M, Boy JJ, Yamni K, Albizane A (2005) J Phys IV France 126:47Google Scholar
  51. 51.
    Byrappa K, Adschiri T (2007) Prog Cryst Grow Charact Mat 53:117CrossRefGoogle Scholar
  52. 52.
    Morey GW (1953) J Am Ceram Soc 36:279CrossRefGoogle Scholar
  53. 53.
    Mitsuda T (1980) Ceram Jpn 15:184Google Scholar
  54. 54.
    Somiya S (2006) J Mater Sci 41:1307CrossRefGoogle Scholar
  55. 55.
    Lobachev AN (ed) (1973) Crystallization processes under hydrothermal conditions. Consultants Bureau, New York, p 225Google Scholar
  56. 56.
    Somiya S (ed) (1990) Hydrothermal preparation of fine powders, advanced ceramics III. Elsevier Applied Science Publishers, UKGoogle Scholar
  57. 57.
    Kajiyoshi K, Tomono K, Hamaji Y, Kasanami T, Yoshimura M (1995) J Am Ceram Soc 78:1521CrossRefGoogle Scholar
  58. 58.
    Cho WS, Yashima M, Kakihana M, Kudo A, Sakata T, Yoshimura M (1997) J Am Ceram Soc 80:765CrossRefGoogle Scholar
  59. 59.
    Yoshimura M, Yoo SE, Hayashi M, Ishizawa N (1989) Jpn J Appl Phys 28:L2007CrossRefGoogle Scholar
  60. 60.
    Cho WS, Yoshimura M (1997) J Mater Res 12:833CrossRefGoogle Scholar
  61. 61.
    Ishizawa N, Yoo SE, Hayashi M, Yoshimura M (1990) Mater Res Soc Proc 200:57Google Scholar
  62. 62.
    Ishizawa N, Banno H, Hayashi M, Yoo SE, Yoshimura M (1990) J Appl Phys 29:2467CrossRefGoogle Scholar
  63. 63.
    Komarneni S (2003) Curr Sci 85:1730Google Scholar
  64. 64.
    Lee JH, Kumagai N, Watanabe T, Yoshimura M (2002) Solid State Ionics 151:41CrossRefGoogle Scholar
  65. 65.
    Komarneni S, Fregeau E, Breval E, Roy R (1988) J Am Ceram Soc 71:26CrossRefGoogle Scholar
  66. 66.
    Suchanek WL, Byrappa K, Shuk P, Riman RE, Tenhuisen KS, Janas VF (2004) Biomaterials 25:4647CrossRefGoogle Scholar
  67. 67.
    Sakamoto N, Fujino T, Watanabe T, Yoshimura M (2006) J Mater Sci 41:1363CrossRefGoogle Scholar
  68. 68.
    Mousavand T (2007) Ph.D. Thesis, Tohoku University, Sendai, JapanGoogle Scholar
  69. 69.
    Faraday M (1857) Philos Trans R Soc London 147:145CrossRefGoogle Scholar
  70. 70.
    Von Chroustshoff K (1873) Ann Chem 3:281Google Scholar
  71. 71.
    Morey GW (1953) J Am Ceram Soc 36:279CrossRefGoogle Scholar
  72. 72.
    Hannay JB (1880) Proc Royal Soc London 30:178CrossRefGoogle Scholar
  73. 73.
    Spezia G (1900) Atti Accad Sci Torino 35:95Google Scholar
  74. 74.
    Yanagisawa K, Yamasaki N (1991) J Mater Sci 26:473CrossRefGoogle Scholar
  75. 75.
    Komarneni S, Roy R, Li QH (1992) Mater Res Bull 27:1393CrossRefGoogle Scholar
  76. 76.
    Yu SH, Qian YT (2006) In: Adachi M, Lockwood DJ (eds) Nanostructure science and technology, self-organized nanoscale materials. John Wiley & Sons, USAGoogle Scholar
  77. 77.
    Demazeau G (1994) In: Proc. Ist international conference on solvothermal reactions, Takamatsu, Japan, Dec. 5–7Google Scholar
  78. 78.
    Adschiri T, Arai K (2002) In: Sun Y-P (ed) Supercritical fluid technology in materials science and engineering. Marcel Dekker Inc., New York, p 311Google Scholar
  79. 79.
    Byrappa K, Ohara S, Adschiri T (2007) Adv Drug Deliv Rev (in press)Google Scholar
  80. 80.
    Zhang J, Ohara S, Umetsu M, Naka T, Hatakeyama Y, Adschiri T (2007) Adv Mater 19:203CrossRefGoogle Scholar
  81. 81.
    Yu TY, Joo J, Park YI, Hyeon TW (2005) Angew Chem Int Ed 44:7411CrossRefGoogle Scholar
  82. 82.
    Adschiri T, Mousavand T, Takami S, Umetsu M, Ohara S, Naka T, Tsukada T (2005) In: Wakayama H (ed) Materials chemistry in supercritical fluids. Research Signpost, India, p 79Google Scholar
  83. 83.
    Wang H, Zhu JJ, Zhu JM, Liao XH, Xu S, Ding T, Chen HY (2002) Phys Chem Chem Phys 4:3794CrossRefGoogle Scholar
  84. 84.
    Taniguchi T, Watanabe T, Ahniyaz A, Yoshimura M (2007) J Am Ceram Soc (submitted)Google Scholar
  85. 85.
    Ahniyaz A, Watanabe T, Yoshimura M (2005) J Phys Chem B 109:6136CrossRefGoogle Scholar
  86. 86.
    Kim CK, Lee JH, Katoh S, Murakami R, Yoshimura M (2001) Mater Res Bull 36:2241CrossRefGoogle Scholar
  87. 87.
    Suchanek WL, Shuk P, Byrappa K, Riman RE, Tenhuisen KS, Janas VF (2002) Biomaterials 2–3:699CrossRefGoogle Scholar
  88. 88.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607CrossRefGoogle Scholar
  89. 89.
    Alivisatos AP, Johnson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez M, Schultz PG (1996) Nature 382:609CrossRefGoogle Scholar
  90. 90.
    Komarneni S (2007) J Mater Sci (this issue)Google Scholar
  91. 91.
    Ijima S (1991) Nature 354:56CrossRefGoogle Scholar
  92. 92.
    Katayama K, Yao H, Nakanishi F, Doi H, Saegusa A, Okuda N, Yamada T (1998) Appl Phys Lett 73:102CrossRefGoogle Scholar
  93. 93.
    Yakobson BI, Smalley RE (1997) Am Sci 85:324Google Scholar
  94. 94.
    Ajayam PM, Ebbesen TW (1997) Rep Prog Phys 60:1025CrossRefGoogle Scholar
  95. 95.
    Polizu S, Savadogo O, Poulin P, Yahia L (2006) J Nanosci Nanotechnol 6:1883CrossRefGoogle Scholar
  96. 96.
    Rojas-Chapana JA, Giersig M (2006) J Nanosci Nanotechnol 6:316Google Scholar
  97. 97.
    Mattson MP, Haddon RC, Rao AM (2000) J Mol Neurosci 14:175CrossRefGoogle Scholar
  98. 98.
    Basavalingu B, Calderon Moreno JM, Byrappa K, Gogotsi Yu, Yoshimura M (2001) Carbon 39:1763CrossRefGoogle Scholar
  99. 99.
    Basavalingu B, Byrappa K, Madhusudan P, Dayananda AS, Yoshimura M (2006) J Mater Sci 41:1465CrossRefGoogle Scholar
  100. 100.
    Calderon-Moreno JM, Yoshimura M (2001) J Am Chem Soc 123:741CrossRefGoogle Scholar
  101. 101.
    (a) Gogotsi Yu, Libera JA, van Groos AFK, Yoshimura M (2000) In: Yanagisawa K, Feng Q (eds) Proc. Joint ISHR and ICSTR – 2000, p 350. (b) Gogosti Yu, Libera JA, Yoshimura M (2000) J Mater Res 15:2591Google Scholar
  102. 102.
    (a) Srikantaswamy S, Calderon-Moreno JM, Yoshimura M (2002) J Mater Res 17:734. (b) Suchanek WL, Libera JA, Gogotsi Yu, Yoshimura M (2001) J Solid State Chem 160:184Google Scholar
  103. 103.
    Sujaridworakun P, Pongkao D, Ahniyaz A, Yamakawa Y, Watanabe T, Yoshimura M (2005) J Nanosci Nanotechnol 5:875CrossRefGoogle Scholar
  104. 104.
    Byrappa K, Subramani AK, Ananda S, Lokanatha Rai KM, Sunitha MH, Basavalingu B, Soga K (2006) J Mater Sci 41:1355CrossRefGoogle Scholar
  105. 105.
    Dayananda AS, Sajan CP, Basavalingu B, Byrappa K, Soga K, Yoshimura M (2007) J Mater Sci (this issue)Google Scholar
  106. 106.
    Song SW, Fujita H, Yoshimura M (2002) Adv Mater 14:268CrossRefGoogle Scholar
  107. 107.
    Teranishi R, Fujiwara T, Watanabe T, Yoshimura M (2002) Solid State Ionics 151:97CrossRefGoogle Scholar
  108. 108.
    Watanabe T, Wang H, Yamakawa Y, Yoshimura M (2006) Carbon 44:799CrossRefGoogle Scholar
  109. 109.
    Sengupta SK, Singh R, Srivastava AK (1998) J Electrochem Soc 145:2209CrossRefGoogle Scholar
  110. 110.
    Kakihana M, Yoshimura M (1999) Bull Chem Soc Japan 72:1427CrossRefGoogle Scholar
  111. 111.
    Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M (2006) Angew Chem Int Ed 45:2378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials and Structures LaboratoryTokyo Institute of TechnologyYokohamaJapan
  2. 2.University of MysoreMysoreIndia

Personalised recommendations