Advertisement

Journal of Materials Science

, Volume 42, Issue 20, pp 8760–8764 | Cite as

Porous alumina ceramics produced with lycopodium spores as pore-forming agents

  • Z. Živcová
  • E. Gregorová
  • W. Pabst
Letter

Many applications of porous ceramics require a precise control of porosity, as well as pore size, pore shape and pore space topology. Among the various pore-forming agents (PFA) used in ceramic technology, those of biological origin are especially popular for fabricating porous ceramics, due to the fact that their burnout is usually harmless from the ecological and hygiene point of view, while their content of ash-producing inorganic salts is mostly low enough to be neglected with respect to the ceramic composition. Examples are wood flour (saw dust), crushed nut shells [1, 2, 3] and poppy seed [4] for pore sizes of several hundreds of micrometers and, on the other hand, starch for pore sizes below 100 μm [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Commercially available starch types cover the size range from approx. 5 μm for rice starch to approx. 50 μm for potato starch (median diameter) [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21...

Keywords

Total Porosity Open Porosity Potato Starch Pore Throat Porous Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was part of the research program “Preparation and Research of Functional Materials and Material Technologies using Micro- and Nanoscopic Methods”, supported by the Ministry of Education, Youth and Sports of the Czech Republic (Grant No. MSM 6046137302). The support is gratefully acknowledged.

References

  1. 1.
    Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York, p 10Google Scholar
  2. 2.
    Rice RW (2003) Ceramic fabrication technology. Marcel Dekker, New York, p 283Google Scholar
  3. 3.
    Woyansky JS, Scott CE, Minnear WP (1992) Am Ceram Soc Bull 71:1674Google Scholar
  4. 4.
    Gregorová E, Pabst W (in press) Ceram Int. doi:10.1016/j.ceramint.2006.05.019Google Scholar
  5. 5.
    Corbin SF, Apte PS (1999) J Am Ceram Soc 82:1693CrossRefGoogle Scholar
  6. 6.
    Davis J, Kristoffersson A, Carlström E, Clegg W (2000) J Am Ceram Soc 83:2369CrossRefGoogle Scholar
  7. 7.
    Galassi C, Roncari E, Capiani C, Fabbri G, Piancastelli A, Peselli M, Silvano F (2002) Ferroelectrics 268:47CrossRefGoogle Scholar
  8. 8.
    Kim JG, Cho WS, Sim JH (2002) J Mater Sci Mater Electron 13:497CrossRefGoogle Scholar
  9. 9.
    Kim JG, Kwon YJ, Oh JH, Cho WS, Whang CM, Yoo YC (2004) Mater Chem Phys 83:217CrossRefGoogle Scholar
  10. 10.
    Mattern A, Huchler B, Staudenecker D, Oberacker R, Nagel A, Hoffmann MJ (2004) J Eur Ceram Soc 24:3399CrossRefGoogle Scholar
  11. 11.
    Diaz A, Hampshire S (2004) J Eur Ceram Soc 24:413CrossRefGoogle Scholar
  12. 12.
    Reynaud C, Thévenot F, Chartier T, Besson JL (2005) J Eur Ceram Soc 25:589CrossRefGoogle Scholar
  13. 13.
    Barea R, Osendi MI, Ferreira JMF, Miranzo P (2005) Acta Mater 53:3313CrossRefGoogle Scholar
  14. 14.
    Gregorová E, Pabst W, Bohačenko I (2006) J Eur Ceram Soc 26:1301CrossRefGoogle Scholar
  15. 15.
    Gregorová E, Živcová Z, Pabst W (2006) J Mater Sci 41:6119CrossRefGoogle Scholar
  16. 16.
    Lyckfeldt O, Ferreira JMF (1998) J Eur Ceram Soc 18:131CrossRefGoogle Scholar
  17. 17.
    Alves HM, Tari G, Fonseca AT, Ferreira JMF (1998) Mater Res Bull 33:1439CrossRefGoogle Scholar
  18. 18.
    Lyckfeldt O (1999) Br Ceram Proc 60:219Google Scholar
  19. 19.
    Lemos AF, Ferreira JMF (2000) Mater Sci Eng C 11:35CrossRefGoogle Scholar
  20. 20.
    Pabst W, Gregorová E, Havrda J, Týnová E (2001) In: Heinrich JG, Aldinger F (eds) Ceramic materials and components for engines. Wiley-VCH, Weinheim, p 587Google Scholar
  21. 21.
    Bowden ME, Rippey MS (2002) Key Eng Mater 206–213:1957Google Scholar
  22. 22.
    Týnová E, Pabst W, Gregorová E, Havrda J (2002) Key Eng Mater 206–213:1969Google Scholar
  23. 23.
    Pabst W, Týnová E, Mikač J, Gregorová E, Havrda J (2002) J Mater Sci Lett 21:1101CrossRefGoogle Scholar
  24. 24.
    Týnová E, Pabst W, Mikač J (2003) Macromol Symp 203:295CrossRefGoogle Scholar
  25. 25.
    Gregorová E, Pabst W (2007) J Eur Ceram Soc 27:669CrossRefGoogle Scholar
  26. 26.
    Adler J (2005) Int J Appl Ceram Technol 2:429CrossRefGoogle Scholar
  27. 27.
    Wilder GJ (1970) Am J Bot 57:1093CrossRefGoogle Scholar
  28. 28.
    Chu MCY (1974) Am J Bot 61:681CrossRefGoogle Scholar
  29. 29.
    Wanner SC, Pusch M (2000) J North Am Benthol Soc 19:648CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Glass and CeramicsInstitute of Chemical Technology, PraguePrague 6Czech Republic

Personalised recommendations