Journal of Materials Science

, Volume 42, Issue 20, pp 8618–8621 | Cite as

Viscosity and electrical conductivity of liquid Sn–Ti and Sn–Zr alloys

  • Yu. Plevachuk
  • S. Mudry
  • V. Sklyarchuk
  • A. Yakymovych
  • U. E. Klotz
  • M. Roth


Viscosity and electrical conductivity of liquid Sn–Ti and Sn–Zr alloys on the Sn-rich side were investigated in a wide temperature range above the melting temperature. It was shown that admixtures of Ti and Zr considerably increased the viscosity of liquid Sn. The electrical conductivity of the melts decreased with an increase of the Ti and Zr content. The conductivity results are interpreted in the context of the s–d hybridization model.


  1. 1.
    Dupin N, Ansara I, Servant C et al. (1999) J Nuclear Mater 275:287CrossRefGoogle Scholar
  2. 2.
    Subasic N (1998) Calphad 22(2):157CrossRefGoogle Scholar
  3. 3.
    Liu C, Klotz UE, Uggowitzer PJ, Löffler JF (2005) Monatshefte für Chemie-Chemical Monthly 136(11):1921CrossRefGoogle Scholar
  4. 4.
    Plevachuk Yu, Sklyarchuk V (2001) Meas Sci Technol 12(1):23CrossRefGoogle Scholar
  5. 5.
    Herwig F, Wobst M (1991) Z Metallkd 82:913Google Scholar
  6. 6.
    Gebhardt E, Köstlin K (1958) Z Metallkd 48:636Google Scholar
  7. 7.
    Battezzati L, Greer AL (1989) Acta Metall 37(7):1791CrossRefGoogle Scholar
  8. 8.
    Agaev AD, Kostikov VI and Bobkovski VN (1980) Izv Akad Nauk SSSR Metall 43(3)Google Scholar
  9. 9.
    Paradis P-F, Ishikawa T, Yoda S (2002) Int J Thermophys 23(3):825CrossRefGoogle Scholar
  10. 10.
    Elyutin VP, Maurakh MA, Turov VD (1965) Izv Vyssh Ucheb Zaved Chern Met 8:110Google Scholar
  11. 11.
    Ishikawa T, Paradis P-F, Itami T, Yoda S (2005) Meas Sci Technol 16:443CrossRefGoogle Scholar
  12. 12.
    Heuzy M-C, Pelton AD (1996) Metall Trans 27B:810Google Scholar
  13. 13.
    Sudavtsova VS, Podarevskaya OV (2001) In: Gelchinski B (eds) in Proceedings of the 10th Russian Conference on Structure and Properties of Metallic and Slag Alloys, Ekaterinburg, November 2001. YUrGU edition, Ekaterinburg, p 10Google Scholar
  14. 14.
    Terzieff P (2006) J. Alloys Compd., doi:10.1016/j.jallcom.2006.11.074Google Scholar
  15. 15.
    Bestandji M (2000) Ph. D. Thesis, University of Metz, FranceGoogle Scholar
  16. 16.
    Ziman J (1972) Principles of the theory of solids. Cambridge Univ. Press, LondonGoogle Scholar
  17. 17.
    Friedel J (1969) In: Ziman JM (ed.) Transition metals: electronic structure of the d band and its role in “Crystalline and Magnetic Structures, The Physics of Metals, vol. 1: Electrons”. Cambridge Univ., LondonGoogle Scholar
  18. 18.
    Makradi A, Gasser JG, Hugel J et al. (1999) J Phys: Condens Matter 11:671CrossRefGoogle Scholar
  19. 19.
    Terzieff P, Auchet J (1998) J Phys: Condens Matter 10:4139CrossRefGoogle Scholar
  20. 20.
    Tamaki S (1968) J Phys Soc Jpn 25(6):1596CrossRefGoogle Scholar
  21. 21.
    Faber TE (1972) An introduction to the theory of liquid metals. Cambridge Univ., LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yu. Plevachuk
    • 1
  • S. Mudry
    • 1
  • V. Sklyarchuk
    • 1
  • A. Yakymovych
    • 1
  • U. E. Klotz
    • 2
  • M. Roth
    • 2
  1. 1.Department of Metal PhysicsIvan Franko National UniversityLvivUkraine
  2. 2.Laboratory of Joining & Interface TechnologyEmpa, Swiss Federal Laboratories for Materials Testing and ResearchDuebendorfSwitzerland

Personalised recommendations