Advertisement

Journal of Materials Science

, Volume 42, Issue 21, pp 8853–8863 | Cite as

A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues

  • Alexander E. EhretEmail author
  • Mikhail Itskov
Nano- and micromechanical properties of hierarchical biological materials

Abstract

In this paper a generalized anisotropic hyperelastic constitutive model for fiber-reinforced materials is proposed. Collagen fiber alignment in biological tissues is taken into account by means of structural tensors, where orthotropic and transversely isotropic material symmetries appear as special cases. The model is capable to describe the anisotropic stress response of soft tissues at large strains and is applied for example to different types of arteries. The proposed strain energy function is polyconvex and coercive. This guarantees the existence of a global minimizer of the total elastic energy, which is important in the context of a boundary value problem.

Keywords

Structural Tensor Strain Energy Function Arterial Tissue Soft Biological Tissue Hyperelastic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Humphrey JD (2002) Cardiovascular Solid mechanics: cells, tissues, and organs. Springer, New YorkGoogle Scholar
  2. 2.
    Fung YC (1993) Biomechanics mechanical properties of living tissues, 2nd ed. Springer, New YorkGoogle Scholar
  3. 3.
    Sacks MS (2000) J Elasticity 61:199CrossRefGoogle Scholar
  4. 4.
    Holzapfel GA, Gasser TC, Ogden RW (2000) J Elasticity 61:1CrossRefGoogle Scholar
  5. 5.
    Schmid H, Nash MP, Young AA, Hunter PJ (2006) ASME J Biomech Eng 128:742CrossRefGoogle Scholar
  6. 6.
    Arruda EM, Boyce MC (1993) J Mech Phys Solids 41:389CrossRefGoogle Scholar
  7. 7.
    Bischoff JE, Arruda EA, Grosh K (2002) J Appl Mech 69:570CrossRefGoogle Scholar
  8. 8.
    Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Mech Phys Solids 53:1552CrossRefGoogle Scholar
  9. 9.
    Lanir Y (1978) Biophys J 24:541Google Scholar
  10. 10.
    Kastelic J, Palley I, Baer E (1980) J Biomech 13:887CrossRefGoogle Scholar
  11. 11.
    Freed AD, Doehring TC (2005) ASME J Biomech Eng 127:587CrossRefGoogle Scholar
  12. 12.
    Gasser TC, Ogden RW, Holzapfel GA (2006) J R Soc Interface 3:15CrossRefGoogle Scholar
  13. 13.
    Holzapfel GA, Gasser TC, Ogden RW (2004) ASME J Biomech Eng 126:264CrossRefGoogle Scholar
  14. 14.
    Merodio J, Ogden RW (2002) Arch Mech 54:525Google Scholar
  15. 15.
    Merodio J, Ogden RW (2003) Int J Solids Struct 40:4707CrossRefGoogle Scholar
  16. 16.
    Wilber JP, Walton JR (2002) Math Mech Solids 7:217CrossRefGoogle Scholar
  17. 17.
    Chuong CJ, Fung YC (1983) ASME J Biomech Eng 105:268Google Scholar
  18. 18.
    Ball JM (1977) Arch Rat Mech Anal 63:337CrossRefGoogle Scholar
  19. 19.
    Schröder J, Neff P (2003) Int J Solids Struct 40:401CrossRefGoogle Scholar
  20. 20.
    Ball JM (2002) Geometry, mechanics, and dynamics. Springer, New York, p 3CrossRefGoogle Scholar
  21. 21.
    Steigmann DJ (2003) Math Mech Solids 8:497CrossRefGoogle Scholar
  22. 22.
    Itskov M, Aksel N (2004) Int J Solids Struct 41:3833CrossRefGoogle Scholar
  23. 23.
    Itskov M, Ehret AE, Mavrilas D (2006) Biomech Model Mechanobiol 5:17CrossRefGoogle Scholar
  24. 24.
    Balzani D, Neff P, Schröder J, Holzapfel GA (2006) Int J Solids Struct 43:6052CrossRefGoogle Scholar
  25. 25.
    Itskov M (2007) Tensor algebra and tensor analysis for engineers with application to continuum mechanics. Springer, BerlinGoogle Scholar
  26. 26.
    Itskov M (2002) ZAMM 82:535CrossRefGoogle Scholar
  27. 27.
    Truesdell C, Noll W (1965) Handbuch der Physik, vol III/3. Springer, BerlinGoogle Scholar
  28. 28.
    Ogden RW (1984) Non-linear elastic deformations. Ellis Horwood, ChichesterGoogle Scholar
  29. 29.
    Zhang JM, Rychlewski J (1990) Arch Mech 42:267Google Scholar
  30. 30.
    Spencer AJM (1984) Continuum theory of the mechanics of fibre-reinforced composites. Springer Wien, p 1Google Scholar
  31. 31.
    Boehler JP (1977) ZAMM 57:323CrossRefGoogle Scholar
  32. 32.
    Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeGoogle Scholar
  33. 33.
    Hill R (1968) J Mech Phys Solids 16:229CrossRefGoogle Scholar
  34. 34.
    Müller S, Qi T, Yan BS (1994) Ann Inst Henri Poincaré Analyse non linéaire 11:217Google Scholar
  35. 35.
    Ball JM (1996) Bull Amer Math Soc 33:269Google Scholar
  36. 36.
    Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Am J Physiol Heart Circ Physiol 289:2048CrossRefGoogle Scholar
  37. 37.
    Vande Geest JP, Sacks MS, Vorp DA (2004) ASME J Biomech Eng 126:815CrossRefGoogle Scholar
  38. 38.
    Treloar LRG (1975) The physics of rubber elasticity, 3rd ed. Oxford University PressGoogle Scholar
  39. 39.
    Gent A (2004) Rubber Chem Technol 96:59Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Continuum MechanicsRWTH Aachen UniversityAachenGermany

Personalised recommendations