Journal of Materials Science

, Volume 42, Issue 15, pp 5924–5935 | Cite as

Influence of microstructure on corrosion behavior of Ti–5%Ta–1.8%Nb alloy

  • R. Mythili
  • A. Ravi Shankar
  • S. SarojaEmail author
  • V. R. Raju
  • M. Vijayalakshmi
  • R. K. Dayal
  • V. S. Raghunathan
  • R. Balasubramaniam


This paper presents the results of a study on the influence of microstructure on the corrosion behavior of a α–β Ti–5%Ta–1.8%Nb alloy—a candidate material for use in high concentrations of boiling nitric acid. The “as cast” alloy had a lamellar structure and showed a corrosion rate of about 1.5 mpy. Thermo-mechanical processing of the cast alloy resulted in a structure of predominantly of equiaxed α with random distribution of fine β particles. This “reference” structure was further modified employing different heat treatments similar to that for commercial titanium alloys such as mill annealing, solution treatment and aging or over aging treatments. Corrosion rates evaluated in boiling nitric acid in the liquid, vapor and condensate phases, showed low values ∼1 mpy. Of these, the lowest corrosion rate (∼0.03 mpy) was exhibited by the structure with minimum amount of β phase, distributed in an equiaxed α matrix. This structure was obtained by aging of the solution treated “reference” alloy. Hence, solution treatment high in the α + β phase field followed by aging at a temperature low in the α + β phase field has been identified as the optimum treatment to obtain a microstructure with superior corrosion resistance.


Corrosion Resistance Corrosion Rate Oxide Film Corrosion Behavior Condensate Phase 



The authors wish to acknowledge Dr Baldev Raj, Director, IGCAR, Kalpakkam for his encouragement and keen interest in their pursuit on studies in titanium alloys.


  1. 1.
    Kamachi Mudali U, Dayal RK, Gnanamoorthy JB (1993) J Nucl Mater 203:73CrossRefGoogle Scholar
  2. 2.
    Furuya T, Satoh H, Shimogori K, Nakamura Y, Matsumoto K, Komori Y, Takeda S (1984) In: Proceedings of ANS topical meeting, vol I, p 1.249Google Scholar
  3. 3.
    Kiuchi K, Hayashi M, Hayakawa H, Sakairi M, Kikuchi M (1994) “Fundamental study of controlling factors on reliability of fuel reprocessing plant materials used in nitric acid solutions”, a poster paper in session: “Corrosion and materials selection”. In: Proceedings of the fourth international conference on nuclear fuel reprocessing and waste management, RECOD ’94, vol III, London, 24–28 April 1994Google Scholar
  4. 4.
    Ronald WS (1995) In: Baboian R (ed) Corrosion tests and standards: application and interpretation. ASTM manual series: MNL 20. ASTM, Philadelphia, USA, p 493Google Scholar
  5. 5.
    Steele DF (1986) Atom. March:5Google Scholar
  6. 6.
    Furuya T, Kawafuku J, Satoh H, Shimogori K, Aoshima A, Takeda S (1991) ISIJ Int 31(2):189CrossRefGoogle Scholar
  7. 7.
    Kiuchi K, Hayakawa H, Takagi Y, Kikuchi M (1994) “New alloy development for fuel reprocessing plant materials used in nitric acid solutions”, a poster paper in session: “Corrosion and materials selection”. In: Proceedings of the fourth international conference on nuclear fuel reprocessing and waste management, RECOD ’94, vol III, London, 24–28 April 1994Google Scholar
  8. 8.
    Kapoor K, Kain V, Gopal Krishna T, Sanyal T, De PK (2003) J Nucl Mater 322:36CrossRefGoogle Scholar
  9. 9.
    Mythili R, Thomas Paul V, Saroja S, Vijayalakshmi M, Raghunathan VS (2005) Mater Sci Eng A390:299CrossRefGoogle Scholar
  10. 10.
    Mythili R, Saroja S, Vijayalakshmi M, Raghunathan VS (2005) J Nucl Mater 345:167CrossRefGoogle Scholar
  11. 11.
    Ravishankar A, Mythili R, Raju VR, Saroja S, Dayal RK, Vijayalakshmi M, Raghunathan VS, Balasubramaniam R, Singhal LK (2003) In: Raj B, Bhanu Sankara Rao K, Shankar P, Murali N (eds) Proceedings of conference on materials and technologies for nuclear fuel cycle, Chennai, India, 15–16 December 2003, p C-7Google Scholar
  12. 12.
    Ravi Shankar A (2004) Corrosion behaviour of Ti-5%Ta-1.8%Nb alloy in nitric acid medium for fast reactor fuel reprocessing applications. M. Tech. Thesis, Indian Institute of Technology, Kanpur, IndiaGoogle Scholar
  13. 13.
    Bernard C, Mouroux JP (1991) In: Proceedings of the third international conference on nuclear fuel reprocessing and waste management, RECOD ’91, vol II, Sendai, Japan, 14–18 April 1991, p 570Google Scholar
  14. 14.
    Flower HM (1990) Mater Sci Tech 6:1082CrossRefGoogle Scholar
  15. 15.
    Gill FJ, Genebra MP, Manero JM, Planell JA (2001) J Alloys Compd 329:142CrossRefGoogle Scholar
  16. 16.
    Zhang XD, Bonniwell P, Fraser HL, Baeslack WA III, Evans DJ, Ginter T, Bayha T, Cornell B (2003) Mater Sci Eng A343:210CrossRefGoogle Scholar
  17. 17.
    Publication of Imperial Metal Industries (1969) Corrosion characteristics of titanium in “Corrosion resistance of titanium”, Witton, UK, p 39Google Scholar
  18. 18.
    Brossia CS, Cragnolino GA (2001) Corrosion 57(9):768CrossRefGoogle Scholar
  19. 19.
    Dull L, Raymond L (1969) J Electrochem Soc 116:332Google Scholar
  20. 20.
    Lampman S (1987) In: Steven RL, Scott DH (eds) ASM Metals Hand book, vol 2, “Properties & Selection: Non-ferrous Alloys & Special Purpose Materials”, 10th edn. ASM International, Materials Park, OH, USA, p 592Google Scholar
  21. 21.
    Robin A, Sandim HRZ, Rosa JL (1999) Corr Sci 41:1333CrossRefGoogle Scholar
  22. 22.
    Kenneth RT, Chamberlain J (1988) Corrosion for students of science and engineering. John Wiley and Sons Inc., USA, p 335Google Scholar
  23. 23.
    Metikos-Hukovic M, Kwokal A (2003) J Piljac, Biomater 24:3765CrossRefGoogle Scholar
  24. 24.
    Williams JC (1973) In: Jaffee RI, Burte HM (eds) Titanium science and technology, vol 3, Plenum Press, New York, p 1433Google Scholar
  25. 25.
    Ronald WS, David ET (1987) In: Joseph RD, James DD (eds) ASM Metals Handbook, vol 13, “Corrosion”, 9th edn. ASM International, Materials Park, OH, USA, p 669Google Scholar
  26. 26.
    Pergament AL, Stefanovich GB (1998) Thin Solid Films 322:33CrossRefGoogle Scholar
  27. 27.
    Te-Lin Y (1986) In: Young CS, Durham JC (eds) Industrial applications of titanium, zirconium: vol 4, ASTM STP 917. ASTM, Philadelphia, p 57Google Scholar
  28. 28.
    Bomberger HB (1984) In: Webster RT, Young CS (eds) Industrial applications of titanium and zirconium: third conference, STP 830. ASTM, Philadelphia, p 143Google Scholar
  29. 29.
    Khan MA, Williams RL, Williams DF (1996) Biomaterials 17(22):2117CrossRefGoogle Scholar
  30. 30.
    Yu SY, Scully JR (1997) Corrosion 53(12):965CrossRefGoogle Scholar
  31. 31.
    Thair L (2002) Studies on thermomechanically processed and nitrogen ion implanted Ti-6Al-7Nb biomedical alloy. PhD Thesis, Anna University, Chennai, IndiaGoogle Scholar
  32. 32.
    Marc Long HJ, Rack H (1998) Biomaterials 19:1621CrossRefGoogle Scholar
  33. 33.
    Sittig C, Textor M, Spencer ND, Wiland M, Vallotton PH (1999) J Mater Sci: Mater Med 10:35Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. Mythili
    • 1
  • A. Ravi Shankar
    • 1
  • S. Saroja
    • 1
    Email author
  • V. R. Raju
    • 1
  • M. Vijayalakshmi
    • 1
  • R. K. Dayal
    • 1
  • V. S. Raghunathan
    • 1
  • R. Balasubramaniam
    • 2
  1. 1.Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Department of Materials and Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations