Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4716–4719 | Cite as

SEM-ECC observations of dislocation structures in a cyclically deformed Cu single crystal oriented for [ \(\overline{2}23\)] conjugate double slip

  • Xiao-Wu LiEmail author
  • Yang Zhou
Letter
Dislocation structures induced by the cyclic deformation of single-slip-oriented Cu single crystals have been extensively investigated mainly by transmission electron microscope (TEM) and well-documented in the last four decades [ 1, 2, 3]. It is recognized that the dislocation structures of fatigued Cu single crystals oriented for single slip are strongly dependent upon the applied plastic strain amplitude γ pl, and that the well-known two-phase structure of persistent slip band (PSB) ladders and matrix veins forms in the range of γ pl corresponding to the plateau region in the cyclic stress-strain (CSS) curve of the crystal [ 4, 5]. However, double- and/or multiple-slip are frequently seen to operate in polycrystals and it may thus not be appropriate to relate simply the cyclic deformation behavior of single-slip-oriented crystals to that of polycrystals. Therefore, quite recently, we investigated systematically the cyclic deformation behavior of double- and multiple-slip-oriented Cu...

Keywords

Plastic Strain Slip System Dislocation Structure Plastic Strain Amplitude Persistent Slip Band 

Notes

Acknowledgements

This research was financially supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Northeastern University and State Education Ministry. Prof. X.W. Li is grateful for these supports. This work was also partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 50671023. Thanks are also due to Mr. H.H. Su and Dr. R.Q. Yang for assistances with regard to SEM-ECC observations.

References

  1. 1.
    Laird C, Charsley P, Mughrabi H (1986) Mater Sci Eng A 81:433CrossRefGoogle Scholar
  2. 2.
    Basinski ZS, Basinski SJ (1992) Prog Mater Sci 36:89CrossRefGoogle Scholar
  3. 3.
    Suresh S (1998) Fatigue of materials. Cambridge University Press, LondonCrossRefGoogle Scholar
  4. 4.
    Winter AT (1974) Phil Mag 30:719CrossRefGoogle Scholar
  5. 5.
    Mughrabi H (1978) Mater Sci Eng 33:207CrossRefGoogle Scholar
  6. 6.
    Li XW, Wang ZG, Li GY, Wu SD, Li SX (1998) Acta Mater 46:4497CrossRefGoogle Scholar
  7. 7.
    Li XW, Wang ZG, Li SX (1999) Mater Sci Eng A 260:132CrossRefGoogle Scholar
  8. 8.
    Li XW, Wang ZG, Li SX (1999) Mater Sci Eng A 265:18CrossRefGoogle Scholar
  9. 9.
    Li XW, Wang ZG, Li SX (1999) Mater Sci Eng A 269:166CrossRefGoogle Scholar
  10. 10.
    Li XW, Wang ZG, Li SX (1999) Phil Mag Lett 79:715CrossRefGoogle Scholar
  11. 11.
    Li XW, Wang ZG, Li SX (1999) Phil Mag Lett 79:869CrossRefGoogle Scholar
  12. 12.
    Li XW, Wang ZG, Li SX (2000) J Mater Sci Lett 19:641CrossRefGoogle Scholar
  13. 13.
    Jin NY (1987) Phil Mag Lett 56:23CrossRefGoogle Scholar
  14. 14.
    Lepisto TK, Kuokkala V-T, Kettunen PO (1986) Mater Sci Eng 81:457CrossRefGoogle Scholar
  15. 15.
    Wang ZR, Gong B, Wang ZG (1997) Acta Mater 45:1379CrossRefGoogle Scholar
  16. 16.
    Li XW, Zhang ZF, Wang ZG, Li SX, Umakoshi Y (2001) Defect Diff Forum 188–199:153CrossRefGoogle Scholar
  17. 17.
    Li XW, Umakoshi Y, Wang ZG, Li SX (2001) Z Metallkd 92:1222Google Scholar
  18. 18.
    Li XW, Wang ZG, Zhang YW, Li SX, Umakoshi Y (2002) Phys Stat Sol (a) 191:97CrossRefGoogle Scholar
  19. 19.
    Li XW, Umakoshi Y, Gong B, Li SX, Wang ZG (2002) Mater Sci Eng A 333:51CrossRefGoogle Scholar
  20. 20.
    Gong B, Wang ZR, Wang ZR (1997) Acta Mater 45:1365CrossRefGoogle Scholar
  21. 21.
    Lepisto T, Kuokkala V-T, Kettunen P (1984) Scripta Metall 18:245CrossRefGoogle Scholar
  22. 22.
    Wang RH, Mughrabi H (1984) Mater Sci Eng 63:147CrossRefGoogle Scholar
  23. 23.
    Gostelow CR (1971) Metal Sci J 5:177CrossRefGoogle Scholar
  24. 24.
    Saletore M, Taggart R (1978) Mater Sci Eng 36:259CrossRefGoogle Scholar
  25. 25.
    Jin NY, Winter AT (1984) Acta Metall 32:989CrossRefGoogle Scholar
  26. 26.
    Jin NY (1987) Phil Mag Lett 56:23CrossRefGoogle Scholar
  27. 27.
    Vorren O, Ryum N (1988) Acta Metall 36:1443CrossRefGoogle Scholar
  28. 28.
    Zhai T, Martin JW, Briggs GAD, Willkinson AJ (1996) Acta Metall 44:3477Google Scholar
  29. 29.
    Zhang ZF, Wang ZG, Sun ZM (2001) Acta Mater 49:2875CrossRefGoogle Scholar
  30. 30.
    Li XW, Li SX, Wang ZG (2000) Phil Mag A 80:1901CrossRefGoogle Scholar
  31. 31.
    Gong B, Wang ZR, Chen DL, Wang ZG (1997) Scripta Mater 37:1605CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of Materials Physics and Chemistry, College of SciencesNortheastern UniversityShenyangP.R. China
  2. 2.Key Laboratory for Anisotropy and Texture Engineering of Materials (Ministry of Education)Northeastern UniversityShenyangP.R. China

Personalised recommendations