Journal of Materials Science

, Volume 43, Issue 8, pp 2955–2961 | Cite as

Structures and purification of boron nitride nanotubes synthesized from boron-based powders with iron particles

  • Naruhiro Koi
  • Takeo Oku
  • Masahiro Inoue
  • Katsuaki Suganuma
Article

Abstract

Boron nitride (BN) nanotubes, nanohorns and nanocoils were synthesized by annealing Fe4N/B, FeB and Fe/B powders at 1000 °C for 1–24 h in nitrogen gas atmosphere, and large amounts of BN nanotubes were obtained by annealing Fe4N/B. The growth mechanism and atomic structures were investigated on cup-stacked BN nanotubes synthesized from Fe4N/B by X-ray diffraction, high-resolution electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy. As-produced BN soot was purified by removing non-BN nanomaterials such as metal catalyst particles and unreacted boron, and high purity BN nanotubes were obtained.

References

  1. 1.
    Mickelson W, Aloni S, Han W-Q, Cumings J, Zettl A (2003) Science 300:467CrossRefGoogle Scholar
  2. 2.
    Golberg D, Xu F-F, Bando Y (2003) Appl Phys A 76:479CrossRefGoogle Scholar
  3. 3.
    Oku T, Narita I, Nishiwaki A, Koi N (2004) Defects and Diffusion Forum 226–228:113Google Scholar
  4. 4.
    Oku T, Hirano T, Kuno M, Kusunose T, Niihara K, Suganuma K (2000) Mater Sci Eng B 74:206CrossRefGoogle Scholar
  5. 5.
    Narita I, Oku T, Tokoro H, Suganuma K (2006) Solid State Commun 137:44CrossRefGoogle Scholar
  6. 6.
    Oku T, Hiraga K, Matsuda T, Hirai T, Hirabayashi M (2003) Diam Relat Mater 12:1918CrossRefGoogle Scholar
  7. 7.
    Oku T, Koi N, Narita I, Suganuma K, Nishijima M (2007) Mater Trans 48 (in press)Google Scholar
  8. 8.
    Zhi C, Bando Y, Tang C, Honda S, Sato K, Kuwahara H, Golberg D (2006) J Phys Chem B 110:1525CrossRefGoogle Scholar
  9. 9.
    Emrah Unalan H, Chhowalla M (2005) Nanotechnology 16:2153CrossRefGoogle Scholar
  10. 10.
    Kusunoki M, Honjo C, Suzuki T, Hirayama T (2005) Appl Phys Lett 87:103CrossRefGoogle Scholar
  11. 11.
    Ding F, Rosén A, Bolton K (2005) Carbon 43:2215CrossRefGoogle Scholar
  12. 12.
    Ikuno T, Honda S, Kamada K, Oura K, Katayama M (2005) J Appl Phys 97:104329-1-4Google Scholar
  13. 13.
    Niyogi S, Hu H, Hamon MA, Bhowmik P, Zhao B, Rozenzhak SM, Chen J, Itkis ME, Meier MS, Haddon RC (2001) J Am Chem Soc 123:733CrossRefGoogle Scholar
  14. 14.
    Georgakilas V, Voulgaris D, Va´zquez E, Prato M, Guldi DM, Kukovecz A, Kuzmany H (2002) J Am Chem Soc 124:14318CrossRefGoogle Scholar
  15. 15.
    Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2002) Carbon 40:985CrossRefGoogle Scholar
  16. 16.
    Gregan E, Keogh SM, Maguire A, Hedderman TG, Neill LO, Chambers G, Byrne HJ (2004) Carbon 42:1031CrossRefGoogle Scholar
  17. 17.
    Koi N, Oku T, Narita I, Suganuma K (2005) Diam Relat Mater 14:1190CrossRefGoogle Scholar
  18. 18.
    Narita I, Oku T, Tokoro H, Suganuma K (2006) J Electron Microsc 55:123CrossRefGoogle Scholar
  19. 19.
    Ogrin D, Colorado R Jr, Maruyam B, Pender MJ, Smalley RE, Barron AR (2006) Dalton Trans 229:229CrossRefGoogle Scholar
  20. 20.
    Oku T, Narita I, Nishiwaki A (2006) J Euro Ceram Soc 26:443CrossRefGoogle Scholar
  21. 21.
    Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS (2002) Appl Phys Lett 80:1267CrossRefGoogle Scholar
  22. 22.
    Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS (2003) Carbon 41:1941CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Naruhiro Koi
    • 1
  • Takeo Oku
    • 1
  • Masahiro Inoue
    • 1
  • Katsuaki Suganuma
    • 1
  1. 1.Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, OsakaJapan

Personalised recommendations